, Volume 43, Issue 4, pp 287–291 | Cite as

Protective Effects of Curcumin against Fluoride-Induced Oxidative Stress in the Rat Brain

  • S. F. NabaviEmail author
  • Sh. Eslami
  • A. Hajizadeh Moghaddam
  • S. M. Nabavi

We examined effects of a plant polyphenolic compound, curcumin, against fluoride-induced oxidative stress in the rat brain. Five experimental groups of male rats (10 animals each) were compared. Animals of these experimental groups were treated with curcumin (10 and 20 mg/kg body mass), vitamin C (10 mg/kg), and sample solvent (0.5 ml) for a week prior to sodium fluoride intoxication. After treatment, rats of the experimental groups, except for the normal control group, were intoxicated with sodium fluoride (600 ppm through drinking water) for a week. Then, brains were collected and homogenized, and activities of superoxide dismutase and catalase and levels of reduced glutathione and lipid peroxidation final products were evaluated in the brain tissue homogenates. Treatment with curcumin prior to fluoride intoxication significantly normalized the above biochemical parameters; the intensity of protective effects of 20 mg/kg curcumin was close to that of vitamin C.


fluoride intoxication oxidative stress curcumin enzymatic antioxidants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Ebrahimzadeh, S. F. Nabavi, S. M. Nabavi, et al., “Antihemolytic and antioxidant activities of Allium paradoxum,” Cent. Eur. J. Biol., 5, 338–345 (2010).CrossRefGoogle Scholar
  2. 2.
    M. A. Ebrahimzadeh, S. M. Nabavi, S. F. Nabavi, et al., “Antioxidant and free radical scavenging activities of culinary-medicinal mushrooms, golden chanterelle Cantharellus cibarius and angel’s wings Pleurotus porrigens,” Int. J. Med. Mushrooms, 12, 265–272 (2010).CrossRefGoogle Scholar
  3. 3.
    A. Rajeswari, “Curcumin protects mouse brain from oxidative stress caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,” Eur. Rev. Med. Pharmacol. Sci., 10, 157–161 (2006).PubMedGoogle Scholar
  4. 4.
    D. Sheril, An Investigation into the Neuroprotective Prospective of Curcumin, Rhodes Univ., Electronic thesis collection TR (2003).Google Scholar
  5. 5.
    H. Ammon and M. A. Wahl, “Pharmacology of Curcuma longa,” Planta Med., 57, 1–7 (1991).PubMedCrossRefGoogle Scholar
  6. 6.
    J. Tilak, M. Banerjee, H. Mohan, et al., “Antioxidant availability of turmeric in relation to its medicinal and culinary uses,” Phytother. Res., 18, 798–804 (2004).PubMedCrossRefGoogle Scholar
  7. 7.
    S. Shishodia, G. Sethi, and B. B. Aggarwal, “Curcumin: Getting back to the roots,” Ann. N. Y. Acad. Sci., 1056, 206–217 (2005).PubMedCrossRefGoogle Scholar
  8. 8.
    H. Hatcher, R. Planalp, and J. Cho, “Curcumin: From ancient medicine to current clinical trials,” Cell. Mol. Life Sci., 65, 1631–1652 (2008).PubMedCrossRefGoogle Scholar
  9. 9.
    J. A. Varner, K. F. Jensen, and W. Horvath, “Chronic administration of aluminum fluoride or sodium fluoride to rats in drinking water: alterations in neuronal and cerebrovascular integrity,” Brain Res., 784, 284–298 (1998).PubMedCrossRefGoogle Scholar
  10. 10.
    Y. M. Shivarajashankara, A. R. Shivashankara, and P. G. Bhat, “Effect of fluoride intoxication on lipid peroxidation and antioxidant systems in rats,” Fluoride, 31, 108–113 (2001).Google Scholar
  11. 11.
    D. Chlubek, “Fluoride and oxidative stress,” Fluoride, 36, 217–228 (2003).Google Scholar
  12. 12.
    I. Inkielewicz and W. Czanowski, “Oxidative stress parameters in rats exposed to fluoride and aspirin,” Fluoride, 41, 76–82 (2008).Google Scholar
  13. 13.
    M. Bhatnagar, P. Rao, and J. Sushma, “Neurotoxicity of fluoride: neurodegeneration in hippocampus of female mice,” Ind. J. Exp. Biol., 40, 546–554 (2002).Google Scholar
  14. 14.
    B. Halliwell and J. M. Gutteridge, “Oxygen toxicity, oxygen radicals, transition metals and disease,” Biochem. J., 219, 1–14 (1984).PubMedGoogle Scholar
  15. 15.
    A. R. Shivashankara, Y. M. Shivarajashankara, P. G. Bhat, et al., “Lipid peroxidation and antioxidant defense systems in liver of rats in chronic fluoride toxicity,” Bull. Environ. Cont. Toxicol., 68, 612–616 (2002).CrossRefGoogle Scholar
  16. 16.
    M. A. Ebrahimzadeh, S. F. Nabavi, S. M. Nabavi, et al., “In vitro antioxidant and antihemolytic activities of hydroalcoholic extracts of Allium scabriscapum Boiss. & Ky. aerial parts and bulbs,” Int. J. Food Prop . (accepted) (2011).Google Scholar
  17. 17.
    M. Sinha, P. Manna, and P. C. Sil, “A 43 kD protein from the herb, Cajanus indicus L., protects against fluoride-induced oxidative stress in mice erythrocytes,” Pathophysiology, 14, 47–54 (2007).PubMedCrossRefGoogle Scholar
  18. 18.
    M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,” Anal. Biochem., 72, 248–254 (1976).PubMedCrossRefGoogle Scholar
  19. 19.
    H. Esterbauer and K. H. Cheeseman, “Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal,” Methods Enzymol., 186, 407–421 (1990).PubMedCrossRefGoogle Scholar
  20. 20.
    H. P. Misra and I. Fridovich, “The role of superoxide anion in the autooxidation of epinephrine and simple assay for superoxide dismutase,” J. Biol. Chem., 247, 3170–3175 (1972).PubMedGoogle Scholar
  21. 21.
    J. Bonaventura, W. A. Schroeder, and S. Fang, “Human erythrocyte catalase: an improved method of isolation and a reevaluation of reported properties,” Arch. Biochem. Biophys., 150, 606–617 (1972).PubMedCrossRefGoogle Scholar
  22. 22.
    G. L. Ellman, “Tissue sulfhydryl group,” Arch. Biochem. Biophys., 82, 70–77 (1959).PubMedCrossRefGoogle Scholar
  23. 23.
    B. M. Babior, “The respiratory burst oxidase,” Adv. Enzymol. Rel. Area Mol. Biol., 65, 49–65 (1992).Google Scholar
  24. 24.
    J. M. Mates, C. P. Gomez, and C. Nunez, “Antioxidant enzymes and human diseases,” Clin. Biochem., 32, 595–603 (1999).PubMedCrossRefGoogle Scholar
  25. 25.
    S. I. Yamagishi, D. Edelstein, X. L. Du, et al., “Hyperglycaemia potentiates collagen-induced platelet activation through mitochondrial superoxide overproduction,” Diabetes, 50, 1491–1494 (2001).PubMedCrossRefGoogle Scholar
  26. 26.
    I. Mazzetti, B. Grigolo, R. M. Borzi, et al., “Serum copper, zinc superoxide dismutase level in patients with rheumatoid arthritis,” Int. J. Clin. Lab. Res., 26, 245–249 (1996).PubMedCrossRefGoogle Scholar
  27. 27.
    H. Bartsch and J. Nair, “Ultrasensitive and specific detection method for exocyclic DNA adducts: markers for lipid peroxidation and oxidative stress,” Toxicology, 153, 105–114 (2000).PubMedCrossRefGoogle Scholar
  28. 28.
    B. Halliwell and J. M. C. Guttteridge, Free Radicals in Biology and Medicine, Oxford Univ. Press (Clarendon), Oxford (2007).Google Scholar
  29. 29.
    M. Gul, F.Z. Kutay, S. Temocin, et al., “Cellular and clinical implication of glutathione,” Ind. J. Exp. Biol., 38, 625–634 (2000).Google Scholar
  30. 30.
    S. A. Sheweita, M. Abd El-Gabar, and M. Bastawy, “Carbon tetrachloride induced changes in the activity of phase II drug metabolizing enzyme in the liver of male rats: role of antioxidants,” Toxicology, 165, 217–224 (2001).PubMedCrossRefGoogle Scholar
  31. 31.
    S. L. Liu, S. Degli Esposti, T. Yao, et al., “Vitamin E therapy of acute CCl4 induced hepatic injury in mice is assisted with inhibition of nuclear factor kappa B binding,” Hepatology, 22, 1474–1481 (1995).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • S. F. Nabavi
    • 1
    Email author
  • Sh. Eslami
    • 2
  • A. Hajizadeh Moghaddam
    • 3
  • S. M. Nabavi
    • 1
    • 3
  1. 1.National Elites Foundation of IranTehranIran
  2. 2.Medical Sciences University of MazandaranSariIran
  3. 3.Department of BiologyUniversity of MazandaranBabolsarIran

Personalised recommendations