Skip to main content
Log in

Role of Calcium Signaling in the Development of Prenatal Stress-Induced Functional Modifications of the Hypothalamo-Pituitary-Adrenal Axis

  • Published:
Neurophysiology Aims and scope Submit manuscript

We studied the effect of a blocker of calcium L-type channels, nimodipine, influencing rats within the prenatal period on the hormonal reaction of the adrenal glands (measured according to the level of corticosterone in the blood plasma) upon acute stress or upon injection of noradrenaline into the third cerebral ventricle in adult rat offspring (6- to 8-month-old males and females). Mothers in these animals were subjected daily to 1-hlong immobilization within the last week of pregnancy (from the 15th to 21th day). In males, prenatal stress weakened the adrenocortical reaction to acute stress immobilization, while in females such stress moderately intensified the above reaction. Peroral administration of 20 mg/kg nimodipin prior to immobilization of pregnant mothers prevented the development of the mentioned disturbances of the stress-related reaction of the hypothalamo-pituitary-adrenal axis (HPAA) in adult offspring of both sexes. Hormonal reaction of the adrenal cortex to injection of noradrenaline into the third cerebral ventricle of adult rat females, which was absent in prenatally stressed animals, was completely preserved after injection of nimodipin within the prenatal period. At the same time, nimodipin did not influence prenatal stress-induced changes in noradrenergic reactivity of the HPAA in adult males. Injection of nimodipine into pregnant mothers (which were not subjected to immobilization stressing) provided a modifying action on the formation of reactivity of the HPAA in adult offspring, which was manifested in prolongation of the adrenocortical reaction of the HPAA to intraventricular noradrenaline injection in males and females and also in moderate intensification of the hormonal response of the adrenal cortex to acute stress in females. The obtained data indicate that calcium-dependent mechanisms are significantly involved in the process of programming of prenatal stressinduced functional modifications of the HPAA in adult animals, while nimodipin exerts a protective effect with respect to these changes via weakening of calcium signalization in the cerebral regions involved in the control of the HPAA function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. A. G. Reznikov, V. P. Pishak, N. D. Nosenko, et al., Prenatal Stress and Neuroendocrine Pathology [in Russian], Medakademiya, Chernovtsy (2004).

    Google Scholar 

  2. P. M. Plotsky, “Early postnatal experience alters hypothalamic corticotrophin-releasing factor (CRF) messenger-RNA, median-eminence CRF content and stress-induced release in adult rats,” Mol. Brain Res., 18, 195–200 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. C. M. McCormick, J. W. Smythe, S. Sharma, and M. J. Meaney, “Sex-specific effects of prenatal stress on hypothalamic-pituitary-adrenal responses to stress and brain glucocorticoid receptor density in adult rats,” Dev. Brain Res., 84, 55–61 (1995).

    Article  CAS  Google Scholar 

  4. M. Weinstock, “Does prenatal stress impair coping and regulation of hypothalamic-pituitary-adrenal axis?” Neurosci. Behav. Rev., 21, 1–10 (1997).

    CAS  Google Scholar 

  5. L. K. Takahashi, “Prenatal stress alters brain catecholaminergic activity and potentiates stress-induced behavior in adult rats,” Brain Res., 547, 131–137 (1992).

    Article  Google Scholar 

  6. P. G. Kostyuk, E. P. Kostyuk, and E. A. Lukyanetz, Calcium ions in the Cerebral Function – from Physiology to Pathology [in Ukrainian], Naukova Dumka, Kyiv (2005).

    Google Scholar 

  7. M. P. Mattson, “Components of neurite outgrowth that determine neural cytoarchitecture: influence of calcium and the growth substrate,” J. Neurosci. Res., 20, 331–345 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. M. P. Mattson, “Calcium as sculptor and destroyer of neural circuitry,” Exp. Gerontol., 27, 29–49 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. E. C. Davis, P. Popper, R. A. Gorski, and E. C. Davis, “The role of apoptosis in sexual differentiation of the rat sexually dimorphic nucleus of the preoptic area,” Brain Res., 734, 10–18 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. M. Rodriguez-Medina, E. Canchola, M. Vergara-Onofre, and A. Rosado, “Ca2+/calmodulin system: participation on rat sexual hypothalamic differentiation,” Pharm. Biochem. Behav., 46, 697–702 (1993).

    Article  CAS  Google Scholar 

  11. M. A. Rodriguez-Medina, M. Vergara, M. E. Chavarria, et al., “Changes in hypothalamic calmodulin concentration induced by perinatal hormone manipulation in the rat,” Pharmacol. Biochem. Behav., 61, 445–450 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. M. A. Watson, H. Taylor, and E. D. Lephart, “Androgendependent modulation of calbindin-D28k in hypothalamic tissue during prenatal development,” Neurosci. Res., 32, 97–101 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. E. D. Lephart, M. A. Watson, N. A. Jacobson, et al., “Calbindin-D28k is regulated by adrenal steroids in hypothalamic tissue during prenatal development,” Dev. Brain Res., 100, 117–121 (1997).

    Article  CAS  Google Scholar 

  14. Q. Cai, Z. L. Zhu, X. L. Fan, et al., “Effects of prenatal stress on kinetic properties of high-voltage-activated Ca2+ channel in freshly isolated offspring rat hippocampal CA3 pyramidal neurons,” Nan Fang Yi Ke Da Xue Xue Bao, 26, 1288–1292 (2006).

    CAS  PubMed  Google Scholar 

  15. Q. Cai, Z. L. Zhu, X. L. Fan, et al., “The effects of prenatal stress on Ca2+ channel and K+ channel of hippocampal CA3 pyramidal neurons in rat offspring,” Fen Zi Xi Bao Sheng Wu Xue Bao, 39, 223–228 (2006).

    PubMed  Google Scholar 

  16. Q. Cai, Z. Zhu, H. Li, et al., “Prenatal stress on the kinetic properties of Ca2+ and K+ channels in offspring hippocampal CA3 pyramidal neurons,” Life Sci., 80, 681–689 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. G. J. Biessels, M. P. ter Laak, A. Kamal, and W. H. Gispen, “Effects of the Ca2+ antagonist nimodipine on functional deficits in the peripheral and central nervous system of streptozotocin-diabetic rats,” Brain Res., 1035, 86–93 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. A. G. Reznikov “General ethical principles of experiments on animals,” Endokrinologiya, 8, 142–145 (2003).

    Google Scholar 

  19. Yu. G. Balashov, “Fluorometric microtechnique for estimation of corticosterone: comparison with other techniques,” Fiziol Zh. SSSR, 76, No. 2, 280–283 (1990).

    CAS  PubMed  Google Scholar 

  20. J. Antunes-Rodrigues and S. M. McCann, “Chemical stimulation of water, sodium chloride and food intake by injection of cholinergic and adrenergic drugs into the third brain ventricle,” Proc. Soc. Exp. Biol. Med., 133, 1464–1470 (1970).

    CAS  PubMed  Google Scholar 

  21. P. Harms and S. Ojeda, “A rapid and simple procedure for chronic cannulation of the rat jugular vein,” J. Appl. Physiol., 36, 391–392 (1974).

    CAS  PubMed  Google Scholar 

  22. T. G. Anishchenko and N. B. Igosheva, “Sex differences in stress reactivity in awake and anesthetized rats under conditions of surgery stress,” Byull. Éksp. Biol. Med., 113, No. 1, 26–28 (1992).

    CAS  Google Scholar 

  23. J. Borycz, A. J. Bugajski, A. Gadek-Michalska, and J. Bugajski, “Calcium channel blockers impair the pituitaryadrenocortical responses to central adrenergic receptors stimulation,” J. Physiol. Pharmacol., 44, 161–170 (1993).

    PubMed  Google Scholar 

  24. J. D. Dietz, S. Du, C. W. Bolten, et al., “A number of marketed dihydropyridine calcium channel blockers have mineralocorticoid receptor antagonist activity,” Hypertension, 51, 742–748 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. W. H. Gispen and F. P. Hamers, “Calcium and neuronal dysfunction in peripheral nervous system,” Ann. N. Y. Acad. Sci., 747, 419–430 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. P. R. D. Bar, J. Traber, T. Schuurman, and W. H. Gispen, “CNS and PNS effects of nimodipine,” J. Neural. Transm., Suppl., 31, 55–71 (1990).

    CAS  Google Scholar 

  27. G. Biessels and W. H. Gispen, “The calcium hypothesis of brain aging and neurodegenerative disorders: significance in diabetic neuropathy,” Life Sci., 59, 379–387 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. C. Nyakas, B. Buwalda, E. Markel, et al., “Life-spanning behavioral and adrenal dysfunction induced by prenatal hypoxia in the rat is prevented by the calcium antagonist nimodipine,” Eur. J. Neurosci., 1, 746–753 (1994).

    Article  Google Scholar 

  29. I. L. Ward and J. Weisz, “Differential effects of maternal stress on circulating levels of corticosterone, progesterone and testosterone in male and female rat fetuses and their mothers,” Endocrinology, 114, 1635–1643 (1984).

    Article  CAS  PubMed  Google Scholar 

  30. M. O. Zarrow, J. Philpott, and V. Denenberg, “Passage of 14C-corticosterone from the rat mother to the foetus and neonate,” Nature, 226, 1058–1059 (1970).

    Article  CAS  PubMed  Google Scholar 

  31. E. R. De Kloet, P. Rosenfeld, J. A. Van Eikelen, et al., “Stress, glucocorticoids and development,” Stress, 1, 1–19 (1996).

    Article  Google Scholar 

  32. S. G. Matthews, “Antenatal glucocorticoids and programming of the developing CNS,” Pediat. Res., 47, 291–300 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. K. Fukumoto, T. Morita, T. Mayanagi, et al., “Detrimental effects of glucocorticoids on neuronal migration during brain development,” Mol. Psychiat., 14, 1119–1131 (2009).

    Article  CAS  Google Scholar 

  34. S. M. Nair, T. R. Werkman, J. Craig, et al., “Corticosteroid regulation of ion channel conductances and mRNA levels in individual hippocampal CA1 neurons,” J. Neurosci., 18, 2685–2696 (1998).

    CAS  PubMed  Google Scholar 

  35. A. G. Reznikov, N. D. Nosenko, L. V. Tarasenko, et al., “Neuroendocrine disorders in adult rats treated prenatally with hydrocortisone acetate,” Exp. Toxicol. Pathol., 60, 489–497 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. T. Ohkawa, W. Rohde, F. Gotz, et al., “The effect of an acute maternal stress on endorphin and growth hormone releasing factor in the rat fetus,” Exp. Clin. Endocrinol., 91, 35–42 (1988).

    Article  CAS  PubMed  Google Scholar 

  37. I. S. Zagon and P. McLaughlin, “Identification of opioid peptides regulating proliferation of neurons and glia in the developing nervous system,” Brain Res., 542, 318–323 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. N. D. Nosenko, “Prenatal use of naltrexone prevents impairments of stress reactivity of hypothalamo-pituitaryadrenal axis in rats with syndrome of prenatal stress,” Endokrinologiya, 13, No. 1, 146–150 (2008).

    Google Scholar 

  39. P. V. Sinitsin, “Preventive effect of prenatal use of dexamethasone and naltrexone with respect of stressinduced impairments of noradrenergic reactivity of HPAA,” Endokrinologiya, 12, 263 (2007).

    Google Scholar 

  40. E. T. Piros, P. L. Prather, H. H. Loh, et al., “Ca2+channel and adenylyl cyclase modulation by cloned mu-opioid receptors in GH3 cells,” Mol. Pharmacol., 47, 1041–1049 (1995).

    CAS  PubMed  Google Scholar 

  41. M. Lorentz, B. Hedlund, and P. Arhem, “Morphine activates calcium channels in cloned mouse neuroblastoma cell lines,” Brain Res., 445, 157–159 (1988).

    Article  CAS  PubMed  Google Scholar 

  42. L. Chen, S. Zou, X. Lou, and H. G. Kang, “Different stimulatory opioid effects on intracellular Ca2+ in SH-SY5Y cells,” Brain Res., 882, 256–265 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. S. Esmaelli-Mahani, M. Fereidoni, M. Javan, et al., “Nifedipine suppresses morphine-induced thermal hyperalgesia: Evidence for the role of corticosterone,” Eur. J. Pharmacol., 567, 95–101 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Nosenko.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 42, No. 4, pp. 301-308, July-August, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nosenko, N.D., Sinitsyn, P.V. & Reznikov, A.G. Role of Calcium Signaling in the Development of Prenatal Stress-Induced Functional Modifications of the Hypothalamo-Pituitary-Adrenal Axis. Neurophysiology 42, 251–257 (2011). https://doi.org/10.1007/s11062-011-9157-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-011-9157-9

Keywords