Skip to main content
Log in

Role of Melatonin in the Mechanisms Underlying Neuroendocrine Control of the Hypothalamo-Hypophyseal-Thyroid Axis

  • Published:
Neurophysiology Aims and scope Submit manuscript

The authors of this review generalize and analyze the published data, as well as their own findings, related to melatonin-mediated interaction of the pineal gland (the brain epiphysis) with the hypothalamo-hypophyseal-thyroid axis (HHTA). The review deals with (i) historical aspect of development of the concepts on neuroendocrine mechanisms underlying the control of functions of the thyroid gland, (ii) data on circadian and seasonal rhythms of the functioning of the epiphysis and HHTA, (iii) basic facts about direct and feedback connections between the brain epiphysis and HHTA, and (iv) overview of the experimental data on age-related changes in the epiphysis–thyroid axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. V. Aleshin and V. I. Gubskii, The Hypothalamus and Thyroid Gland [in Russian], Meditsina, Moscow (1983).

    Google Scholar 

  2. V. Shreiber, Pathophysiology of the Endocrine Glands [Russian translation], Avicenum, Prague (1987).

    Google Scholar 

  3. L. Teppermen and H. Teppermen, Physiology of Metabolism and the Endocrine System [Russian translation], Mir, Moscow (1989).

    Google Scholar 

  4. Endocrinology [in Russian], N. Lavin (ed.), Praktica, Moscow (1999).

  5. I. I. Dedov, G. A. Mel’nichenko, and V. V. Fadeev, Endocrinology [in Russian] Meditsina, Moscow (2000).

    Google Scholar 

  6. E. A. Valdina, Diseases of the Thyroid Gland (Handbook) [in Russian], Piter, Saint Petersburg (2001).

    Google Scholar 

  7. P. M. Bodnar, Yu. I. Komisarenko, G. P. Mikhal’chishin, et al., Manual on Endocrinology: Schoolbook for Students of Higher Educational Institutions of ІІІ-ІV Levels of Accreditation [in Ukrainian], Zdorov’ya, Kyiv (2004).

    Google Scholar 

  8. D. M. Aulov, Interaction between the Epiphysis and Thyroid Gland [in Russian], Abstr. of Doctoral Thesis, Biol. Sci., Tashkent (1963).

  9. J. Gordon, J. E. Morley, and J. M. Hershman, “Melatonin and the thyroid,” Horm. Metab. Res., 12, No. 2, 71–73 (1980).

    Article  PubMed  CAS  Google Scholar 

  10. J. Vriend, “The pineal and melatonin in the regulation of pituitary-thyroid axis,” Life Sci., 29, No. 19, 1929–1936 (1981).

    Article  PubMed  CAS  Google Scholar 

  11. E. C. Rom-Bugoslavskaya (Rom-Bugoslavskaja), “The epiphysis and thyroid gland,” Vestn. Akad. Med. Nauk SSSR, No. 8, 88–93 (1985).

  12. R. A. De Fronzo and W. D. Roth, “Evidence for the existence of a pineal-adrenal and a pineal-thyroid axis,” Acta Endocrinol.,70, 35–42 (1972).

    Google Scholar 

  13. A. Lewinski, “Evidence for pineal gland inhibition of thyroid growth: contribution to the hypothesis of a negative feedback between the thyroid and pineal,” Adv. Pineal Res., 1, 167–176 (1986).

    CAS  Google Scholar 

  14. K. Tanaka, M. Murakami, and M. Greer, “Rhythmicity of triiodothyronine generation by type II thyroxine 5’-deiodinase in rat pineal is mediated by a β-adrenergic mechanism,” Endocrinology, 121, No. 1, 74–77 (1987).

    PubMed  CAS  Google Scholar 

  15. Z. Kundurovic and M. Scepovic, “The response of the thyroid gland in rats to irradiation after epiphysectomy and melatonin treatment,” Med. Arch., 43, Nos. 2/3, 151–153 (1989).

    CAS  Google Scholar 

  16. B. Kniazewski, H. Sobieraj, K. Zwirska-Korczala, et al., “Influence of melatonin on thyroid secretion in pinealectomized rats,” Endocrinol. Exp., 24, No. 3, 317–324 (1990).

    PubMed  CAS  Google Scholar 

  17. J. Brzezinski, M. Karbownik, A. Lewinski, et al., “Direct intrathyroidal microinjections of epidermal growth factor reverse the inhibitory effect of in vivo melatonin administration of 3H-thymidine incorporation into DNA of rat thyroid lobes incubated in vitro,” Biomed. Lett., 53, No. 212, 217–224 (1996).

    CAS  Google Scholar 

  18. V. S. Shcherbakova, Effects of Methoxyindoles of the Epiphysis on the Function of the Thyroid Gland in Experiment [in Russian], Abstr. of Candidate Thesis, Biol. Sci., Khar’kov (1988).

  19. V. S. Shcherbakova, “Peculiarities of reaction of the rat thyroid gland upon the action of melatonin against the background of pinealectomy,” Endokrinologiya (Resp. Mezhved. Sb.), Issue 18, 99–103 (1988).

  20. V. P. Pishak, S. I. Dolomatov, O. V. Klykov, et al., “Chronobiological characteristics of renal function under conditions of Т4 and Т3 hypothyroidism,” Aviakosm. Ékol. Med., 34, No. 1, 53–56 (2000).

    CAS  Google Scholar 

  21. A. B. Houssay and H. J. Pazo, “Role of pituitary in thyroid hypertrophy of pinealectomized rats,” Experientia, 24, 813–814 (1968).

    Article  PubMed  CAS  Google Scholar 

  22. L. F. Baschieri, F. de Luca, L. Cramarossa, et al., “Modification of thyroid activity by melatonin,” Experientia, 19, 15–17 (1963).

    Article  PubMed  CAS  Google Scholar 

  23. J. Vriend and M. Steiner, “Melatonin and thyroid function,” in: Melatonin: Clinical Perspectives, Oxford Univ. Press, Oxford, New York, Tokyo (1988), pp. 92–117.

    Google Scholar 

  24. G. Csaba and Z. Nagy, “Effect of TSH and melatonin on thyroid activity in the Rat,” Acta Physiol., 48, Nos. 2/3, 101–103 (1976).

    CAS  Google Scholar 

  25. Y. Narang, D. W. Singh, and C. W. Turner, “Effect of melatonin on thyroid hormone secretion rate and feed consumption of female,” Proc. Soc. Exp. Biol. Med., 125, No. 1, 184–188 (1967).

    PubMed  CAS  Google Scholar 

  26. D. M. Aulov and Z. U. Bekmukhamedov, “Examination of the composition of iodic components of the blood after epiphysectomy and introduction of epiphyseal extract,” Vopr. Biol. Kraev. Med., Issue 4, 333–336 (1963).

    Google Scholar 

  27. J. Vriend and R. J. Reiter, “Free thyroxine index in normal, melatonin-treated and blind hamsters,” Horm. Metab. Res., No. 9, 231–234 (1974).

    Google Scholar 

  28. J. Vriend, R. J. Reiter, and G. R. Anderson, “Effects of the pineal and melatonin on thyroid activity of male golden hamsters,” Gen. Comp. Endocrinol., 38, No. 2, 189–195 (1979).

    Article  PubMed  CAS  Google Scholar 

  29. D. J. Singh and C. W. Turner, “Effect of melatonin upon thyroid hormone secretion rate in female hamsters and male rats,” Acta Endocrinol., 69, 35–40 (1972).

    PubMed  CAS  Google Scholar 

  30. B. Mess, G. P. Trentini, C. Ruzsas, et al., “Pineal-hypothalamic interactions: Possible role of the mono-aminergic neuron system,” Proc. NATO Adv. Study Inst., 361–393 (1983).

  31. R. Relkin, “Use of melatonin and synthetic TRH to determine site of pineal inhibition of TSH secretion,” Neuroendocrinology, 25, 310–318 (1978).

    Article  PubMed  CAS  Google Scholar 

  32. E. S. Rom-Bugoslavskaya, and V. S. Shherbakova, “Effect of the epiphyseal hormone melatonin on functional activity of the rat thyroid gland,” Patol. Fiziol. Éksp. Ter., No. 4, 46–49 (1985).

  33. L. Vollrath, The Pineal Organ, Vol. 17, Springer, Berlin (1981).

    Google Scholar 

  34. J. N. Panda and C. W. Turner, “The role of melatonin in the regulation of thyrotropin secretion,” Acta Endocrinol., 57, 363–373 (1968).

    PubMed  CAS  Google Scholar 

  35. A. S. Antonov, G. Ya. Balkin, O. G. Krivosheev, B. A. Isachenkov, “Interaction of the pineal gland and hypothalamo-hypophyseal complex. ІІІ. Possible role of LH-releasing hormone in the hypothalamus-epiphysis feedbacks,” Probl. Éndokrinol., 23, 51–55 (1977).

    CAS  Google Scholar 

  36. B. Kniazewski, Z. Ostrowska, K. Zwirska-Korczala, and B. Bunter, “The influence of pinealectomy and single dose of melatonin administered at differ times of day on serum T3 and T4 concentrations in rats,” Acta Physiol. Pol., 41, No. 7, 117–126 (1990).

    PubMed  CAS  Google Scholar 

  37. E. S. Rom-Bugoslavskaya (Rom-Bugoslavskaja), V. S. Shcherbakova, and I. V. Komarova, “Effect of melatonin and mexamine on the human thyroid gland under in vitro conditions,” Éksp. Klin. Farmakol., 60, No. 4, 46–49 (1997).

    Google Scholar 

  38. S. Sakamoto, K. Nakamura, K. Inoue, and T. Sakai, “Melatonin stimulates thyroid-stimulating hormone accumulation in the thyrotropes of the rat pars tuberalis,” Histochem. Cell. Biol., 114, No. 3, 213–218 (2000).

    PubMed  CAS  Google Scholar 

  39. M. L. Wright, K. L. Cuthbert, M. J. Donohue, et al., “Direct influence of melatonin on the thyroid and comparison with prolactin,” J. Exp. Zool., 286, No. 6, 625–631 (2000).

    Article  PubMed  CAS  Google Scholar 

  40. J. Arendt, Melatonin and the Mammalian Pineal Gland, Chapmen & Hall, London (1995).

    Google Scholar 

  41. S. Starkey, M. P. Walker, I. J. M. Beresford, and R. M. Hagan, “Modulation of the rat suprachiasmatic circadian clock by melatonin in vitro,” NeuroReport, 6, No. 14, 1947–1951 (1995).

    Article  PubMed  CAS  Google Scholar 

  42. J. Pepping, “Melatonin,” Am. J. Health Syst. Pharm., 56, No. 24, 2520–2527 (1999).

    PubMed  CAS  Google Scholar 

  43. B. Claustran, J. Brun, and G. Chazot, “The basic physiology and pathophysiology of melatonin,” Sleep Med. Rev., 9, No. 1, 11–24 (2005).

    Article  Google Scholar 

  44. R. J. Reiter, “Pineal gland and endocrine role,” Proc. NATO Adv. Study Inst., 227–241 (1983).

  45. L. Tharandt and D. Teinwein, “Melatonin, ein klinisch bedeutsames Hormon?” Deutsche Med. Woch., 108, No. 12, 470–474 (1983).

    Article  CAS  Google Scholar 

  46. R. J. Reiter, “The Pineal Gland,” Groot’s Endocrinol., 1, 240–253 (1989).

    Google Scholar 

  47. Y. Touitou, “Melatonine et glande pineale: guid novi?” Pathol. Biol., 42, No. 4, 277–278 (1994).

    PubMed  CAS  Google Scholar 

  48. L. A. Bondarenko, “Physiology of the epiphysis: modern concepts,” Neurophysiology, 29, No. 3, 168–188 (1997).

    Article  Google Scholar 

  49. N. Valero, “Melatonin: myth or reality?” Invest. Clin., 39, No. 4, 253–255 (1998).

    PubMed  CAS  Google Scholar 

  50. J. C. Patel, “Pineal gland hormone – a brief review,” Ind. J. Med Sci., 52, No. 12, 567–568 (1998).

    CAS  Google Scholar 

  51. A. Strunecka, “Development of the views on the function of the pineal gland,” Cesk. Tysiol., 53, No. 1, 23–28 (2004).

    CAS  Google Scholar 

  52. Y. Toitou, “Melatonin: what for?” Bull. Acad. Natl. Med., 189, No. 5, 879–889 (2005).

    Google Scholar 

  53. R. J. Reiter, “The melatonin rhythm: its massage and its significance,” Neuroendocrinol. Lett., 10, No. 4, 218–225 (1988).

    Google Scholar 

  54. P. M. Armstrong, “Melatonin and circadian control in mammals,” Experientia, 45, 933–938 (1989).

    Article  Google Scholar 

  55. I. Nir, “Biorhythms and the biological clock involvement of melatonin and the pineal gland life and disease,” Biomed. Environ. Sci., 8, No. 2, 90–105 (1995).

    PubMed  CAS  Google Scholar 

  56. K. Morris, “New day dawns for research on circadian rhythms,” Lancet, 353, No. 9157, 990 (1999).

    Google Scholar 

  57. R. Reiter, “Melatonin as the neuroendocrine signal,” Neuroendocrinol. Lett., 9, No. 5, 276 (1987).

  58. R. J. Reiter, “Melatonin: the chemical expression of darkness,” Mol. Cell. Endocrinol., 79, 153–158 (1991).

    Article  Google Scholar 

  59. W. H. Bergstrom and D. O. Hakanson, “Melatonin: the dark force,” Adv. Pediat., 45, 91–106 (1998).

    CAS  Google Scholar 

  60. R. J. Reiter, “Melatonin: That ubiquitously acting pineal hormone,” News Physiol. Sci., 6, 223–227 (1991).

    CAS  Google Scholar 

  61. J. T. Laitinen and J. M. Saavedra, “Putative melatonin receptors in the biological clock,” in: 31 Int. Congr. Physiol. Sei. (Helsinki, 9–14 July 1989), Helsinki (1989), p. 466.

  62. R. D. Weawer and M. H. Reppert, “Melatonin receptors are present in the ferret pars tuberalis and pars distalis, but not in brain,” Endocrinology, 127, No. 5, 2607–2609 (1990).

    Google Scholar 

  63. L. M. Williams, L. T. Hannah, and J. M. Bassett, “Melatonin receptors in neonatal pig brain and pituitary gland,” J. Pineal Res., 26, No. 1, 43–49 (1999).

    Article  PubMed  CAS  Google Scholar 

  64. M. Pévet, L. Bianchi, and P. Pévet, “Circadian photic regulation of melatonin receptor density in rat suprachiasmatic nuclei: Comparison with light induction of fos-related protein,” J. Neurosci. Res., 43, No. 5, 632–637 (1996).

    Article  PubMed  Google Scholar 

  65. R. J. A. Helliwell and L. M. Williams, “Ontogeny of central melatonin receptors in the sheep,” Neuroendocrinology, 62, No. 1, 100 (1990).

    Google Scholar 

  66. L. A. Bondarenko and A. R. Gevorkyan, “Diurnal rhythms of incorporation of 3Н-melatonin into organs of the hypothalamo-hypophyseal-thyroid system in rats in in vitro experiments,” Byul. Éksp. Biol. Med., 143, No. 6, 693–694 (2007).

    Google Scholar 

  67. R. J. A. Helliwell and L. M. Williams, “Melatonin-binding sites in the ovine brain and pituitary: characterization during the oestrous cycle,” J. Neuroendocrinol., 4, No. 3, 287–294 (1992).

    Article  CAS  Google Scholar 

  68. I. I. Dedov and V. I. Dedov, Biorhythms and Hormones [in Russian], Meditsina, Moscow (1992).

    Google Scholar 

  69. V. S. Shcherbakova and E. S. Rom-Bugoslavskaya (Rom-Bugoslavskaja), “Epiphysis − thyroid interaction. Falsifying effect of partial thyroidectomy on contrathyroid influence of epiphyseal methoxyindoles in experiment,” Byul. Éksp. Biol. Med., No. 5, 542–545 (1987).

  70. V. S. Shcherbakova, “Rhythm of sensitivity of target organs to regulating influences of the epiphysis. Basic physiological principle?” in: Scientific and Technical Progress in Biology and Medicine (Proceedings of Scientific Conference) [in Russian], Khar’kov (1987), pp. 269–270.

  71. A. M. Khelimskii, The Epiphysis [in Russian], Meditsina, Moscow (1969).

    Google Scholar 

  72. P. Cady and R. O. Dillman, “Influence of catechol and indole amines upon pineal uptake of thyroxine,” Neuroendocrinology, 8, Nos. 3/4, 228–234 (1971).

    Article  PubMed  CAS  Google Scholar 

  73. I. Nir, “Non-reproductive systems and the pineal gland,” J. Neural. Transm., 42, Suppl. No. 13, 225–244 (1978).

    Google Scholar 

  74. P. Semm, C. Demaine, and L. Vollrath, “Electrical responses of pineal cells to thyroid hormones and parathormone. A microelectrophoretic study,” Neuroendocrinology, 33, No. 4, 212–217 (1981).

    Article  PubMed  CAS  Google Scholar 

  75. P. Semm, C. Demaine, and L. Vollrath, “The effects of microelectrophoretically applied melatonin, putative transmitters, thyroxine and sex hormones on the electrical activity of pineal cells in the guinea-pig,” in: Melatonin: Current Status and Perspective. Proceedings of the International Symposium (Bremen, 1980), Oxford (1981), pp. 129–133.

  76. R. O. Dillman and P. Cady, “Thyroxine metabolism by pineal slices,” Neuroendocrinology, 8, Nos. 3/4, 198–204 (1971).

    Article  PubMed  CAS  Google Scholar 

  77. J. M. Guerrero, M. Puig-Domingo, and R. J. Reiter, “Thyroxine 5-deiodinase activity in pineal gland and frontal cortex: nighttime increase and the effect of either continuous light exposure or superior cervical ganglionectomy,” Endocrinology, 122, No. 1, 236–241 (1988).

    Article  PubMed  CAS  Google Scholar 

  78. E. S. Rom-Bugoslavskaya (Rom-Bugoslavskaja) and O. Yu. Goncharko, “Effect of deficiency and excess of thyroid hormones in the organism,” Pat. Fiziol. Éksp. Ter., Deposited manuscript in VNIIMI, 1980, No. 3758 Dep.

  79. E. S. Rom-Bugoslavskaya (Rom-Bugoslavskaja), O. Yu. Goncharko, and V. S. Shcherbakova, “On levels of the closure of negative feedback in the epyphysis–thyroid gland system,” Éndokrynologiya (Resp. Mezhved. Sb.), Issue 13, 16–19 (1983).

  80. E. S. Rom-Bugoslavskaya (Rom-Bugoslavskaja) and L. A. Bondarenko, “Effect of deficiency and excess of thyroid hormones in the organism on metabolism of indole amines in the rat,” Probl. Éndokrinol., No. 5, 82–85 (1984).

  81. E. S. Rom-Bugoslavskaya (Rom-Bugoslavskaja) and O. Yu. Goncharko, “On negative feedback in the epiphysis − thyroid gland system,” Probl. Éndokrinol., 29, No. 3, 54–58 (1983).

    Google Scholar 

  82. E. S. Rom-Bugoslavskaya (Rom-Bugoslavskaja), V. S. Scherbakova, and L. A. Bondarenko, “Direct and reverse bonds in the system epiphysis-thyroid glands,” in: Melatonin: General Biological and Oncoradiological Aspects (1994), pp. 42–43.

  83. A. Lewinski, S. Webb, and R. J. Reiter, “Pineal inhibition of thyroid growth: its involvement in a possible negative feedback interaction between both glands,” Pineal Res. Rev., 69–94 (1987).

  84. A. Lewinski, E. Wajs, M. Klenski, et al., “Pineal-thyroid interrelationships update: 1996,” Pineal Update, 173–181 (1997).

  85. A. Lewinski and M. Karbownik, “Review: Melatonin and the thyroid gland,” Neuroendocrinol. Lett., 23, Suppl. 1, 73–78 (2002).

    PubMed  CAS  Google Scholar 

  86. M. G. M. Balemans, F. A. Bary, W. C. Legerstee, et al., “Estimation of the methylating capacity in the pineal gland of the rat with special reference to the methylation of N-acetylserotonin and 5-hydroxytryptophan separately,” Experientia, 34, No. 11, 1434–1436 (1978).

    Article  PubMed  CAS  Google Scholar 

  87. D. Sugden, “Melatonin biosynthesis in the mammalian pineal gland,” Experientia, 45, No. 10, 922–932 (1989).

    Article  PubMed  CAS  Google Scholar 

  88. L. A. Bondarenko, “Effect of deficiency and excess of thyroid hormones in the organism on the concentration of melatonin in the blood in mature male rats,” Byul. Éksp. Biol. Med., 111, No. 6, 590–591 (1991).

    CAS  Google Scholar 

  89. E. S. Rom-Bugoslavskaja and L. Bondarenko, “Seasonal peculiarities of thyroxine influence on the way of serotonin metabolism in the pineal gland of the rat,” Acta Physiol., 70, No. 4, 397–401 (1987).

    CAS  Google Scholar 

  90. E. S. Rom-Bugoslavskaya (Rom-Bugoslavskaja) and L. A. Bondarenko, “Seasonal peculiarities of the action of deficiency of thyroid hormones on metabolism of indole amines in the rat epiphysis,” Byul. Éksp. Biol. Med., 111, No. 1, 69–70 (1991).

    Google Scholar 

  91. E. S. Rom-Bugoslavskaya (Rom-Bugoslavskaja), L. A. Bondarenko and T. N. Sil’chenko, “Epiphysis − thyroid interactions: effect of calcitonin on metabolism of indoles in the norm and against the background of excess of thyroid hormones,” Probl. Éndokrinol., 37, No. 2, 33–35 (1991).

    Google Scholar 

  92. L. A. Bondarenko, Importance of Interaction of Factors of Internal and External Environment in the Control of Functional Activity of the pineal Gland [in Ukrainian], Abstr. of Doctoral Thesis, Biol. Sci., Kyiv (2003).

  93. L. O. Bondarenko, “Hypophysis − epiphysis interactions: effect of thyrotropin on biosinthesis and secretion of melatonin,” Éndokrinologiya (Resp. Mizhvid. Zb.), Issue 22, 97–99 (1992).

  94. R. D. Makar and O. R. Makar, “Ills of the thyroid gland that afflict the elderly: peculiarities of clinical course, diagnostics, and treatment,” Mezhdunar. Fiziol. Zh., No. 6 (12), 79–94 (2007).

    Google Scholar 

  95. G. V. Valueva, Aging-Related Metabolism of Thyroid Hormones [in Russian], Abstr. of Doctoral Thesis, Med. Sci., Kyiv (1980).

  96. O. K. Khelimskii and A. S. Stupina, Atherosclerosis- and Aging-Related Functional Morphology of the Endocrine System [in Russian], Meditsina, Leningrad (1989).

    Google Scholar 

  97. V. L. Bykov, “Age-related modifications of the thyroid gland in mice А/НЕ,” Arkh. Anatom., No. 2, 56–69 (1977).

    Google Scholar 

  98. R. D. Makar, O. V. Safonova, and N. V. Chernova, Functional Diagnostics in Clinical Thyroidology. Manual for Physicians [in Ukrainian], L’viv (2006).

  99. L. A. Bondarenko, “Some biochemical aspects of the functioning of the pineal gland in rats in ontogenesis,” Ontogenez, 22, No. 1, 57–62 (1991).

    PubMed  CAS  Google Scholar 

  100. T. S. King, B. A. Richardson, and R. J. Reiter, “Age-associated changes in pineal serotonin: N-acetyltransferase activity and melatonin content in the male gerbil,” Endocrinol. Res. Commun., 8, No. 4, 253–262 (1981).

    Article  CAS  Google Scholar 

  101. R. J. Reiter, L. Y. Johnson, R. W. Steger, et al., “Pineal biosynthetic activity and neuroendocrine physiology in the aging hamster and gerbil,” Peptides, 1, Suppl. 1, 66–72 (1980).

    Google Scholar 

  102. S. F. Pang and P. L. Tang, “Decreased serum and pineal concentration of melatonin and N-acetylserotonin in aged male hamsters,” Horm. Res., 17, No. 2, 228–234 (1983).

    Article  PubMed  CAS  Google Scholar 

  103. V. N. Anisimov, Molecular and Physiological Mechanisms of Aging [in Russian], Nauka, Saint Petersburg (2003).

    Google Scholar 

  104. W. Pierpaoli and G. Maestroni, “Melatonin: a principal neuroimmunoregulatory and antistress hormone: its antiaging effect and aging,” Immunol. Lett., 16, 355–362 (1987).

    Article  PubMed  CAS  Google Scholar 

  105. W. Pierpaoli and V. A. Lesnikov, “The pineal aging clock: evidence, models, mechanisms, interventions,” Ann. N. Y. Acad. Sci., 37, 719, pp. 461–473 (1994).

    Article  Google Scholar 

  106. W. Pierpaoli and W. Regelson, “Pineal control of aging: effect of melatonin and pineal grafting on aging mice,” Proc. Natl. Acad. Sci. USA, 91, No. 2, 787–791 (1994).

    Article  PubMed  CAS  Google Scholar 

  107. L. O. Bondarenko, O. P. Lukashova, and A. R. Gevorkyan, “Hormonal and structural correlates of the functioning of the rat pineal gland in ontogenesis,” in: Proceedings of Scientific-Practical Conference “Endocrine Pathology from the Age Aspect” [in Ukrainian], Khar’kov (2007), pp. 16–17.

  108. M. Karasek and R. J. Reiter, “Melatonin and aging,” Neuroendocrinol. Lett., 23, Suppl. 1, 14–16 (2002).

    PubMed  CAS  Google Scholar 

  109. M. Karasek, “Melatonin, human aging, and age-related diseases,” Exp. Gerontol., 39, Nos. 11/12, 1723–1729 (2004).

    Google Scholar 

  110. C. Ellis de Grande and D. E. Balph, “Age and seasonal differences in the synthesis and metabolism of testosterone by testicular tissue and pineal HIOMT activity of Uinta ground squirrels,” Gen. Comp. Endocrinol., 28, No. 1, 42–51 (1976).

    Article  Google Scholar 

  111. T. V. Kvetnaya and I. V. Knyaz’kin, Melatonin: Role and Importance in Age-Related Pathology [in Russian], VMedA, Saint Petersburg (2003).

    Google Scholar 

  112. T. V. Kvetnaya, I. V. Knyaz’kin, and I. M. Kvetnoi, Melatonin: Neuroimmunoendocrine Marker of Age-Related Pathology [in Russian], DEAN, Saint Petersburg (2005).

    Google Scholar 

  113. B. R. Grand and R. Rozencwaig, “The role of melatonin and serotonin in aging update,” Phychoneuroendocrinology, 18, No. 7, 283–295 (1993).

    Article  Google Scholar 

  114. O. V. Korkushko, V. Kh. Khavinson, and V. B. Shatilo, The Pineal Gland: Pathways for Correction in the Course of Aging [in Russian], Nauka, Saint Petersburg (2006).

    Google Scholar 

  115. Melatonin in the Norm and Pathology [in Russian], F. I. Komarova, S. I. Rapoport, N. K. Malinovskaya, and V. I. Anisimov (eds.), Medpraktika, Moscow (2004).

  116. Patent 9652 of Ukraine MPK (2006) A61K31/24. Method of Intensification of the Hormonal Activity of the Rat Thyroid Gland in Postoperation Hypothyroidism [in Ukrainian], L. O. Bondarenko, I. V. Komarova, and A. R. Gevorkyan (UA). Applicant and copyright proprietor: Danilevskii Institute for Problems of Endocrine Pathology, Academy of Medical Sciences of Ukraine, Khar’kov, Ukraine. No. u 200501390; awarded February 15, 2005; published on October 1, 2005, Byull. No. 10, 4 p.

  117. Patent 34974 of Ukraine MPK (2006) A61K31/40. Method of Recovery of the Hormonal Activity and Structure of the Thyroid Gland in Hypothyroidism of Neuroendocrine Genesis [in Ukrainian], L. O. Bondarenko, L. Yu Sergienko, N. M. Sotnik, and G. M. Cherevko. Applicant and copyright proprietor: Danilevskii Institute for Problems of Endocrine Pathology, Academy of Medical Sciences of Ukraine, Khar’kov, Ukraine. No. u 200804837; awarded April 14, 2008; published on August 26, 2008, Byull. No. 16, 6 p.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. A. Bondarenko, N. N. Sotnik or A. R. Gevorkyan.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 40, Nos. 5/6, pp. 465–476, September–December, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bondarenko, L.A., Sotnik, N.N. & Gevorkyan, A.R. Role of Melatonin in the Mechanisms Underlying Neuroendocrine Control of the Hypothalamo-Hypophyseal-Thyroid Axis. Neurophysiology 40, 393–403 (2008). https://doi.org/10.1007/s11062-009-9065-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-009-9065-4

Keywords