Skip to main content

Advertisement

Log in

Effect of Vitamin В1 Alimentary Deficiency on Spontaneous and Evoked Transmitter Release in Murine Neuromuscular Synapses

  • Published:
Neurophysiology Aims and scope Submit manuscript

Using a microelectrode technique, we studied the effects of alimentary vitamin В1 deficiency on synaptic transmission in isolated phrenico-hemidiaphragmatic murine preparations. Animals of group І (control) were on a standard thiamine-controlled diet (16 mg/kg thiamine) with no limitations. Animals of group II (control with alimentary limitation) were on the same diet, but daily consumption in these animals was limited and made similar to the amount of food consumed by the animals of group ІІІ within idential periods of cage housing (for differentiation of the effects of anorexia related to the thiamine-deficient state in group III and proper effects of В1 hypovitaminosis). Animals of group ІІІ (thiamine-deficient) were on a standard diet (with no limitations) mostly analogous to that in group І but containing no thiamine. In phrenicohemidiaphragmatic preparations obtained from animals of group ІІІ, the amplitude of end-plate potentials (EPPs) and miniature EPPs (mEPPs) on the 10th day of consumption of the thiamine-defficient diet and the quantum composition of EPPs on the 20th day became significantly (Р < 0.01) smaller than in preparations obtained from animals of both groups І and ІІ. The frequency of mEPPs and membrane potential of muscle fibers in group ІІІ remained unchanged. Two processes, a decrease in the dimension of the transmitter quantum (which is observed within rather early stages of the development of thiamine-defficient state) and a decrease in the quantum composition of evoked EPPs (at later stages) underlie a gradual decrease in the amplitude of EPPs related to the development of alimentary vitamin В1 deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. C. Luxemburger, N. J. White, F. ter Kuile, et al., “Beri-beri: the major cause of infant mortality in Karen refugees,” Trans. Roy. Soc. Trop. Med. Hyg., 97, No. 2, 251–255 (2003).

    Article  PubMed  Google Scholar 

  2. A. D. Thomson and E. J. Marshall, “The treatment of patients at risk of developing Wernicke’s encephalopathy in the community,” Alcohol Alcoholism, 41, No. 2, 159–167 (2006).

    Article  CAS  Google Scholar 

  3. B. M. Koffman, L. J. Greenfield, I. I. Ali, and N. A. Pirzada, “Neurologic complications after surgery for obesity,” Muscle Nerve, 33, No. 2, 166–176 (2006).

    Article  PubMed  Google Scholar 

  4. M. Gokce, E. Bulbuloglu, D. Tuncel, et al., “Nonalcoholic Wernicke’s encephalopathy with prominent astasia and optic neuropathy,” Med. Princ. Pract., 14, No. 6, 438–440 (2005).

    Article  PubMed  CAS  Google Scholar 

  5. S. C. Hung, S. H. Hung, D. C. Tarng, et al., “Thiamine deficiency and unexplained encephalopathy in hemodialysis and peritoneal dialysis patients,” Am. J. Kidney Dis., 38, No. 5, 941–947 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. U. Undraccolo, G. Gentile, G. Pomili, et al., “Thiamine deficiency and beriberi features in a patient with hyperemesis gravidarum,” Nutrition, 21, No. 9, 967–968 (2005).

    Google Scholar 

  7. M. L. Alcaide, D. Jayaweera, L. Espinoza, and M. Kolber, “Wernicke’s encephalopathy in AIDS: a preventable cause of fatal neurological deficit,” Int. J. STD AIDS, 14, No. 10, 712–713 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. H. Onishi, C. Kawanishi, M. Onose, et al., “Successful treatment of Wernicke encephalopathy in terminally ill cancer patients: report of 3 cases and review of the literature,” Support Care Cancer, 12, No. 8, 604–608 (2004).

    Article  PubMed  Google Scholar 

  9. A. Kesler, C. Stolovich, C. Hoffmann, et al., “Acute ophthalmoplegia and nystagmus in infants fed a thiamine-deficient formula: an epidemic of Wernicke encephalopathy,” J. Neuroophthalmol., 25, No. 3, 169–172 (2005).

    PubMed  Google Scholar 

  10. S. Sekiyama, S. Takagi, and Y. Kondo, “Peripheral neuropathy due to thiamine deficiency after inappropriate diet and total gastrectomy,” Tokai J. Exp. Clin. Med., 30, No. 3, 137–140 (2005).

    PubMed  Google Scholar 

  11. A. P. Betrosian, E. Thireos, K. Toutouzas, et al., “Occidental beriberi and sudden death,” Am. J. Med. Sci., 327, No. 5, 250–252 (2004).

    Article  PubMed  Google Scholar 

  12. H. Koike, K. Misu, N. Hattori, et al., “Postgastrectomy polyneuropathy with thiamine deficiency,” J. Neurol., Neurosurg., Psychiat., 71, No. 3, 357–362 (2001).

    Article  CAS  Google Scholar 

  13. G. E. Gibson, H. Ksiezak-Reding, K. F. R. Sheu, et al., “Correlation of enzymatic, metabolic and behavioral deficits in thiamine deficits and its reversal,” Neurochem. Res., 9, 803–814 (1984).

    Article  PubMed  CAS  Google Scholar 

  14. A. V. Romanenko and S. E. Shepelev, “Effect of В1 hypovitaminosis on the efficacy of neuromuscular transmission in the murine diaphragm,” Neurophysiology, 39, Nos. 4/5, 366–368 (2007).

    Article  CAS  Google Scholar 

  15. A. V. Romanenko and S. E. Shepelev, “Thiamineinduced modification of neuromuscular transmission at В1 hypovitaminosis,” Klin. Eksp. Patol., 7, No. 1, 92–97 (2008).

    Google Scholar 

  16. О. Nakagawasai, T. Tadano, S. Hozumi, et al., “Characteristics of depressive behavior induced by feeding thiamine-deficient diet in mice,” Life Sci., 69, No. 10, 1181–1191 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. P. G. Kostyuk, Microelectrode Technique [in Russian], Publishing House of Acad. Sci. of Ukrainian SSR, Kyiv (1966).

    Google Scholar 

  18. O. P. Balesina and A. N. Bukiya, “Spontaneous activity of murine neuromuscular junctions in the presence of dantrolene,” Neurophysіology, 33, No. 2, 79–85 (2001).

    Article  Google Scholar 

  19. D. P. Matyushkin, T. M. Drabkina, and I. A. Shabunova, “Quantitative estimate of the function of presynaptic apparatus in single and multiple synapses,” Usp. Fiziol. Nauk, 11, No. 2, 49–70 (1980).

    Google Scholar 

  20. R. F. Rokitskii, Biological Statistics [in Russian], Vyssh. Shkola, Minsk (1973).

    Google Scholar 

  21. S. S. Kelly, “Dietary restriction and miniature end-plate potentials,” J. Physiol., 277, 72P (1978).

    PubMed  CAS  Google Scholar 

  22. L. G. Ermilov, C. B. Mantilla, K. L. Rowley, and G. C. Sieck, “Safety factor for neuromuscular transmission at type-identified diaphragm fibers,” Muscle Nerve, 35, No. 6, 800–803 (2007).

    Article  PubMed  Google Scholar 

  23. A. Szutowicz, M. Tomaszewicz, and H. Bielarczyk, “Disturbances of acetyl-CoA, energy and acetylcholine metabolism in some encephalopathies,” Acta Neurobiol. Exp., 56, No. 1, 323–339 (1996).

    CAS  Google Scholar 

  24. R. H. Edwards, “The neurotransmitter cycle and quantal size,” Neuron, 55, 835–858 (2007).

    Article  PubMed  CAS  Google Scholar 

  25. D. Elmqvist and D. M. J. Quastel, “Presynaptic action of hemicholinium at the neuromuscular junction,” J. Physiol., 177, 463–482 (1965).

    PubMed  CAS  Google Scholar 

  26. H. Aikawa, I. S. Watanabe, T. Furuse, et al., “Low energy levels in thiamine-deficient encephalopathy,” J. Neuropathol. Exp. Neurol., 43, 276–287 (1984).

    Article  PubMed  CAS  Google Scholar 

  27. W. D. Parker, R. Haas, D. A. Stumpf, et al., “Brain mitochondrial metabolism in experimental thiamine deficiency,” Neurology, 34, 477–481 (1984).

    Google Scholar 

  28. R. B. Kelly, “Storage and release of neurotransmitters,” Cell, 72, 43–53 (1993).

    Article  PubMed  Google Scholar 

  29. A. L. Zefirov, “Vesicular cycle in the presynaptic nerve terminal,” Ross. Fiziol. Zh., 93, No. 5, 544–562 (2007).

    CAS  Google Scholar 

  30. D. Sulzer and E. N. Pothos, “Regulation of quantal size by presynaptic mechanisms,” Rev. Neurosci., 11, 159–212 (2000).

    PubMed  CAS  Google Scholar 

  31. J. Czerniecki, G. Chanas, M. Verlaet, et al., “Neuronal localization of the 5-kDa specific thiamine triphosphatase in rodent brain,” Neuroscience, 125, No. 4, 833–840 (2004).

    Article  PubMed  CAS  Google Scholar 

  32. H. O. Nghiêm, L. Bettendorff, and J. P. Changeux, “Specific phosphorylation of Torpedo 43 K rapsyn by endogenous kinase(s) with thiamine triphosphate as the phosphate donor,” FASEB J., 14, No. 3, 543–554 (2000).

    PubMed  Google Scholar 

  33. V. J. Armet and J. R. Cooper, “The role of thiamine in nervous tissue: effect of antimetabolites of vitamin on conduction in mammalian non-myelinated nerve fibers,” J. Pharmacol. Exp. Ther., 148, No. 2, 137–146 (1965).

    Google Scholar 

  34. J. M. Eichenbaum and J. R. Cooper, “Restoration by thiamine of the action potential in ultraviolet irradiated nerve,” Brain Res., 32, 258–260 (1971).

    Article  PubMed  CAS  Google Scholar 

  35. J. M. Fox and W. Duppel, “The action of thiamine and its di- and triphosphates on the slow exponential decline of the ionic currents in the node of Ranvier,” Brain Res., 89, 287–302 (1974).

    Article  Google Scholar 

  36. A. L. Zefirov and G. F. Sitdikova, “Ion channels of the nerve terminal,” Usp. Fiziol. Nauk, 33, No. 4, 3–33 (2002).

    PubMed  CAS  Google Scholar 

  37. J. I. Brigant and A. Mallart, “Presynaptic currents in mouse motor endings,” J. Physiol., 333, 619–639 (1984).

    Google Scholar 

  38. A. Mallart, “А calcium-activated potassium current in motor nerve terminals of the mouse,” J. Physiol., 368, 577–591 (1985).

    PubMed  CAS  Google Scholar 

  39. B. Sh. Gafurov, A. L. Zefirov, and D. M. Shakir’yanova, “Ion currents in a motor nerve terminal of the mouse (electrophysiology and computer simulation),” Neurophysiology, 29, No. 1, 57–64 (1997).

    Article  Google Scholar 

  40. A. V. Romanneko, “The effect of thiamine on neuromuscular transmission in frog,” Neirofiziologiya, 17, No. 6, 794–800 (1985).

    Google Scholar 

  41. S. K. Sharma and J. H. Quastel, “Transport and metabolism of thiamine in rat brain cortex in vitro,” Biochem. J., 94, No. 3, 790–800 (1965).

    PubMed  CAS  Google Scholar 

  42. R. Spector, “Thiamine transport in the central nervous system,” Am. J. Physiol., 230, No. 4, 1101–1107 (1976).

    PubMed  CAS  Google Scholar 

  43. J. Greenwood, R. E. Love, and O. E. Pratt, “Kinetics of thiamine transport across blood-brain barrier in the rat,” J. Physiol., 327, 95–103 (1982).

    PubMed  CAS  Google Scholar 

  44. Y. M. Ostrovskii, Active Centers and Grouping in the Thiamine Molecule [in Russian], Nauka Technika, Minsk (1975).

    Google Scholar 

  45. A. Muralt, “The role of thiamine in neurophysiology,” Ann. N. Y. Acad. Sci., 98, No. 2, 499–507 (1962).

    Article  CAS  Google Scholar 

  46. L. Waldenlind, “Release of thiamine and formation of metylthiamine-like substance in the phrenic nervediaphragm preparation of the rat,” Acta Physiol. Scand., 101, No. 1, 22–27 (1977).

    Article  PubMed  CAS  Google Scholar 

  47. V. A. Dyatlov, “Effect of thiamine on the processes responsible for acetylcholine secretion in the frog neuromuscular synapses,” Neurophysiology, 26, No. 4, 243–249 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Shepelev.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 40, No. 4, pp. 322–331, July–August, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanenko, A.V., Shepelev, S.E. Effect of Vitamin В1 Alimentary Deficiency on Spontaneous and Evoked Transmitter Release in Murine Neuromuscular Synapses. Neurophysiology 40, 270–278 (2008). https://doi.org/10.1007/s11062-009-9043-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-009-9043-x

Keywords