Skip to main content
Log in

Physiological types of substantia gelatinosa neurons in the rat spinal cord

  • Published:
Neurophysiology Aims and scope

Electrophysiological properties of neurons in the substantia gelatinosa (SG, or lamina II) were studied in vitro in spinal cord slices from 3-to 5-week-old rats. Based on the type of action potentials (APs) firing in response to long depolarization (0.5 to 0.8 sec), neurons were categorized into three types: tonic (APs were generated over the whole duration of the stimulus, n = 26, or 41.2%), adapting (a few APs occurred only at the beginning of stimulation, n = 8, 12.7%), and delayed-firing neurons, DFNs (APs occurred at the end of stimulation, n = 22, 35.1%); 11% of the cells had intermediate properties. Neurons of each type expressed distinct ion currents that were subthreshold for AP generation (< −40 mV). Tonic and adapting neurons either had no subthreshold currents (n = 21, or 61.3%) or expressed T-type calcium currents (n = 13, or 38.7%). All DFNs had outward A-type potassium currents. Statistical analysis confirmed this classification scheme: neurons of each type were differentially distributed in a 3-D parametric space of the main cellular properties. Distributions of tonic and adapting neurons partially overlapped, while that of DFNs differed significantly from both the above groups. It is suggested that DFNs perform a special function in the processing of sensory information; the functions of tonic and adapting neurons might be rather similar to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. LaMotte, “Distribution of the tract of Lissauer and the dorsal root fibers in the primate spinal cord,” J. Comp. Neurol., 172, 529–561 (1977).

    Article  PubMed  CAS  Google Scholar 

  2. A. R. Light and E. R. Perl, “Differential termination of large-diameter and small-diameter primary afferent fibers in the spinal dorsal grey matter as indicated by labelling with horse-radish peroxidase,” Neurosci. Lett., 6, 59–63 (1977).

    Article  CAS  PubMed  Google Scholar 

  3. E. R. Perl, “Pain and nociception,” in: Sensory Processes, I. Darian-Smith (ed.), Am. Physiol. Soc., Bethesda (1984), pp. 915–975.

    Google Scholar 

  4. Ramon y Cajal, “Histologie du Systeme Nerveux de l'Homme et des Vertebres,” 1, Maloine, Paris (1909).

    Google Scholar 

  5. S. Gobel, “Golgi studies of the substantia gelatinosa neurons in the spinal trigeminal nucleus,” J. Comp. Neurol., 162, 397–416 (1975).

    Article  PubMed  CAS  Google Scholar 

  6. A. J. Todd and S. G. Lewis, “The morphology of Golgi-stained cells in lamina II of the rat spinal dorsal horn,” J. Anat., 149, 113–119 (1986).

    PubMed  CAS  Google Scholar 

  7. J. A. Beal, “Identification of presumptive long axon neurons in the substantia gelatinosa of the rat lumbosacral spinal cord: A Golgi study,” Neurosci. Lett., 41, 9–14 (1983).

    Article  PubMed  CAS  Google Scholar 

  8. T. J. Grudt and E. R. Perl, “Correlations between neuronal morphology and electrophysiological features in the rodent superficial dorsal horn,” J. Physiol., 540, 189–207 (2002).

    Article  PubMed  CAS  Google Scholar 

  9. A. R. Light, D. L. Trevino, and E. R. Perl, “Morphological features of functionally defined neurons in the marginal zone and substantia gelatinosa of the spinal dorsal horn,” J. Comp. Neurol., 186, 151–172 (1979).

    Article  PubMed  CAS  Google Scholar 

  10. M. Yoshimura, and T. M. Jessel, “Membrane properties of rat substantia gelatinosa neurons in vitro,” J. Neurophysiol., 62, 109–118 (1989).

    PubMed  CAS  Google Scholar 

  11. A. M. Thomson, D. C. West, and P. M. Headley, “Membrane characteristics and synaptic responsiveness of superficial dorsal horn neurons in a slice preparation of adult rat spinal cord,” Eur. J. Neurosci., 1, 479–488 (1989).

    Article  PubMed  Google Scholar 

  12. J. A. Lopez-Garcia and A. E. King, “Membrane properties of physiologically classified rat dorsal horn neurons in vitro: correlation with cutaneous sensory afferent input,” Eur. J. Neurosci., 6, 998–1007 (1994).

    Article  PubMed  CAS  Google Scholar 

  13. R. Ruscheweyh and J. Sandkuhler, “Lamina-specific membrane and discharge properties of rat spinal dorsal horn neurons in vitro,” J. Physiol., 541, 231–244 (2002).

    Article  PubMed  CAS  Google Scholar 

  14. I. V. Melnick, S. Santos, K. Szokol, et al., “Ionic basis of tonic firing in spinal substantia gelatinosa neurons of rat,” J. Neurophysiol., 91, 646–655 (2004).

    Article  PubMed  CAS  Google Scholar 

  15. I. V. Melnick, S. Santos, and B. V. Safronov, “Mechanism of spike frequency adaptation in substantia gelatinosa neurons of rat,” J. Physiol., 559, 383–395 (2004).

    Article  PubMed  CAS  Google Scholar 

  16. S. Santos, I. V. Melnick, and B. V. Safronov, “Selective postsynaptic inhibition of tonic-firing neurons in substantia gelatinosa by μ-opioid agonist,” Anesthesiology, 101, 1177–1183 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. D. M. Campbell and P. K. Rose, “Contribution of voltage-dependent potassium channels to the somatic shunt in neck motoneurons of the cat,” J. Neurophysiol., 77, 1470–1486 (1997).

    PubMed  CAS  Google Scholar 

  18. J. Magistretti, M. Mantegazza, M. de Curtis, and E. Wanke, “Modalities of distortion of physiological voltage signals by patch-clamp amplifiers: a modeling study,” Biophys. J., 74, 831–842 (1998).

    Article  PubMed  CAS  Google Scholar 

  19. S. A. Prescott and Y. de Koninck, “Four cell types with distinctive membrane properties and morphologies in lamina I of the spinal dorsal horn of the adult rat,” J. Physiol., 539, 817–836 (2002).

    Article  PubMed  CAS  Google Scholar 

  20. P. D. Ryu and M. Randic, “Low-and high-voltage-activated calcium currents in rat spinal dorsal horn neurons,” J. Neurophysiol., 63, 273–285 (1990).

    PubMed  CAS  Google Scholar 

  21. Y. Lu and E. R. Perl, “A specific inhibitory pathway between substantia gelatinosa neurons receiving direct C-fiber input,” J. Neurosci., 23, No. 25, 8752–8758 (2003).

    PubMed  CAS  Google Scholar 

  22. Y. Lu and E. R. Perl, “Modular organization of excitatory circuits between neurons of the spinal superficial dorsal horn (laminae I and II),” J. Neurosci., 25, No. 15, 3900–3907 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. S. F. Santos, S. Rebelo, V. A. Derkach, and B. V. Safronov, “Excitatory interneurons dominate sensory processing in the spinal substantia gelatinosa of rat,” J. Physiol., 581, 241–254 (2007).

    Article  PubMed  CAS  Google Scholar 

  24. I. Melnick, N. Pronchuk, M. A. Cowley, et al., “Developmental switch in neuropeptide Y and melanocortin effects in the paraventricular nucleus of the hypothalamus,” Neuron, 56, No. 6, 1103–1115 (2007).

    Article  PubMed  CAS  Google Scholar 

  25. A. Ribeiro-da-Silva, E. P. Pioro, and A. C. Cuello, “Substance P-and enkephalin-like immunoreactivities are colocalized in certain neurons of the substantia gelatinosa of the rat spinal cord: an ultrastructural double-labeling study,” J. Neurosci., 11, No. 4, 1168–1180 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Melnick.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 40, No. 3, pp. 191–198, May–June, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melnick, I.V. Physiological types of substantia gelatinosa neurons in the rat spinal cord. Neurophysiology 40, 161–166 (2008). https://doi.org/10.1007/s11062-008-9030-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-008-9030-7

Keywords

Navigation