Skip to main content
Log in

Neurophysiological and neurochemical aspects of the effects of antidepressants and mood stabilizers

  • Published:
Neurophysiology Aims and scope

Abstract

To date, the mechanisms of action of antidepressants at the molecular and subcellular levels have been relatively well understood. Traditional antidepressants suppress the activity of either monoamine translocases or monoamine oxidase A. Under conditions, of chronic introduction, antidepressants provide a gradual increase in the level of monoamines in the extracellular space of the forebrain structures, which is partly due to the desensitization of monoamine receptors on somatodendrite membranes and membranes of axon terminals. Intensification of the effects of monoamines on the forebrain structures resulting from chronic introduction of antidepressants is accompanied by facilitation in the signal pathway of a secondary messenger (cAMP), activation of the gene apparatus in the neurons, and the enhancement of expression of neurotrophins; these effects lead to a trend toward normalization of the functional state of the neurons impaired in depression. Concepts on the mechanisms of the antidepressive activity of antagonists of NMDA receptors and blockers of receptors of modulatory neuropeptides are discussed. In this review, we also discuss the data on disorders in recycling of inositol; the antimaniacal effect of mood stabilizers can be based on correction of this process. A description of the regulation of activity of cerebral monoaminergic neurons and release of monoamines in their projection is also attached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Sulser, “Regulation and function of noradrenaline receptor systems in brain,” Neuropharmacology, 23, No. 3, 255–261 (1984).

    Article  PubMed  CAS  Google Scholar 

  2. G. R. Heninger and D. S. Charney, “Mechanisms of action of antidepressant treatments: implications for the etiology and treatment of depressive disorders,” in: Psychopharmacology: the Third Generation of Progress, H. Y. Meltzer (ed.), Raven Press, New York (1987), pp. 535–544.

    Google Scholar 

  3. S. Nishizawa, C. Benkelfat, S. N. Young, et al., “Differences between males and females in rates of serotonin synthesis in human brain,” Proc. Natl. Acad. Sci. USA, 94, No. 10, 5308–5315 (1997).

    Article  PubMed  CAS  Google Scholar 

  4. M. Baudry, M. P. Martes, and J. C. Schwartz, “Modulation in the sensitivity of noradrenergic receptors in the CNS studied by the cyclic AMP system,” Brain Res., 116, No. 1, 111–124 (1976).

    Article  PubMed  CAS  Google Scholar 

  5. C. Mazer, J. Muneyyirci, K. Taheny, et al., “Serotonin depletion during synaptogenesis leads to decreased synaptic density and learning deficits in the adult rat: a possible model of neurodevelopmental disorders with cognitive deficits,” Brain Res., 760, No. 3, 760–768 (1997).

    Google Scholar 

  6. C. de Montigni and G. K. Aghajanian, “Tricyclic antidepressants: long-term treatment increases responsivity of rat forebrain neurons to serotonin,” Science, 202, 1303–1306 (1978).

    Article  Google Scholar 

  7. C. de Montigni, “Electroconvulsive treatments enhance responsiveness of forebrain neurons to serotonin,” J. Pharmacol. Exp. Ther., 224, No. 1, 228–230 (1984).

    Google Scholar 

  8. D. Lacroix, P. Blier, O. Curet, and C. de Montigni, “Effect of long-term desipramine administration on noradrenergic neurotransmission: electrophysiological studies in the rat brain,” J. Pharmacol. Exp. Ther., 257, No. 3, 1081–1090 (1991).

    PubMed  CAS  Google Scholar 

  9. R. W. Invernizzi, S. Parini, G. Sacchetti, et al., “Chronic treatment with reboxetine by osmotic pumps facilitates its effect on extracellular noradrenaline and may desensitize alpha2-adrenoreceptors in the prefrontal cortex, ” Br. J. Pharmacol., 132, No. 1, 183–188 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. L. E. Rueter, C. de Montigni, and P. Blier, “Electrophysiological characterization of the effect of long-term duloxetine administration on the rat serotonergic and noradrenergic systems,” J. Pharmacol. Exp. Ther., 285, No. 2, 404–412 (1998).

    PubMed  CAS  Google Scholar 

  11. P. Blier and C. de Montigni, “Current advances and trends in the treatment of depression,” Trends Pharmacol. Sci., 15, No. 5, 220–226 (1994).

    Article  PubMed  CAS  Google Scholar 

  12. M. Hajos, S. E. Gartside, and T. Sharp, “Inhibition of median and dorsal raphe neurons following administration of the selective serotonin reuptake inhibitor paroxetine,” Naunyn-Schmiedeberg’s Arch. Pharmacol., 351, No. 4, 624–629 (1995).

    CAS  Google Scholar 

  13. M. El Mansari, M. Bouchard, and P. Blier, “Alteration of serotonin release in the guinea pig orbito-frontal cortex by selective serotonin reuptake inhibitors,” Neuropsychopharmacology, 13, No. 1, 117–127 (1995).

    Article  PubMed  Google Scholar 

  14. S. T. Szabo, C. de Montigny, and P. Blier, “Modulation of noradrenergic neuronal firing by selective serotonin reuptake blockers,” Br. J. Pharmacol., 126, No. 3, 568–571 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. S. T. Szabo and P. Blier, “Functional and pharmacological characterization of the modulatory role of serotonin on the firing activity of locus coeruleus norepinephrine neurons,” Brain Res., 922, No. 1, 9–20 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. J. Yamada and Y. Sugimoto, “Effects of 5-HT2 receptor antagonists on the anti-immobility effects of imipramine in the forced swimming test with mice,” Eur. J. Pharmacol., 427, No. 2, 221–225 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. P. R. Albert, P. Lembo, J. M. Storring, et al., “The 5-HT1A receptor: Signalling, desensitization, and gene transcription,” Neuropsychopharmacology, 14, No. 1, 19–25 (1996).

    Article  PubMed  CAS  Google Scholar 

  18. D. Martinez, A. Broft, and M. Laruelle, “Pindolol augmentation of antidepressant treatment: recent contribution from brain imaging studies,” Biol. Psychiat., 48, No. 4, 844–853 (2000).

    Article  PubMed  CAS  Google Scholar 

  19. T. Mennini, E. Mocaer, and S. Garattini, “Tianeptine, a selective enhancer of serotonin uptake in rat brain,” Naunyn-Schmiedeberg’s Arch. Pharmacol., 336, No. 3, 478–482 (1987).

    CAS  Google Scholar 

  20. G. Pineyro, L. Deveault, P. Blier, et al., “Effect of acute and long-term tianeptine administration on the 5-HT transporter: electrophysiological and binding studies in the rat brain,” Naunyn-Schmiedeberg’s Arch. Pharmacol., 351, No. 1, 111–118 (1995).

    CAS  Google Scholar 

  21. E. Mocaër, M. C. Rettori, and A. Kamoun, “Pharmacological antidepressive effects and tianeptine-induced 5-HT uptake increase,” Clin. Neuropharmacol., 11, No. 1, 32–42 (1988).

    Google Scholar 

  22. B. S. McEwen, “Stress et hippocampe. Le point sur les connaissances actuelles,” La Presse Med., 37, 1801–1806 (1991).

    Google Scholar 

  23. Y. Watanabe, E. Gould, D. C. Daniels, et al., “Tianeptine attenuates stress-induced morphological changes in hippocampus,” Eur. J. Pharmacol., 222, No. 2, 157–162 (1992).

    Article  PubMed  CAS  Google Scholar 

  24. M. I. Wilde and P. Benfield, “Tianeptine. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy in depression and coexisting anxiety and depression,” Drugs, 49, No. 3, 411–439 (1995).

    Article  PubMed  CAS  Google Scholar 

  25. R. Davis and M. I. Wild, “Mirtazapine: A review of its pharmacology and therapeutic potential in the managment of major depression,” CNS Drugs, 5, No. 5, 389–402 (1996).

    Article  CAS  Google Scholar 

  26. N. M. Barnes and T. Sharp, “A review of central 5-HT receptors and their function,” Neuropharmacology, 38, No. 4, 1083–1152 (1999).

    Article  PubMed  CAS  Google Scholar 

  27. G. Rajkowska, J. J. Miguel-Hidalgo, J. Wej, et al., “Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression,” Biol. Psychiat., 45, No. 5, 1085–1098 (1999).

    Article  PubMed  CAS  Google Scholar 

  28. O. M. Wolkowitz, V. I. Reus, S. E. Lukas, et al., “Dehydroepiandrosterone (DHEA) treatments of depression,” Biol. Psychiat., 41, No. 2, 311–318 (1997).

    Article  PubMed  CAS  Google Scholar 

  29. J. H. Krystal, G. Sanacora, H. Blumberg, et al., “Glutamate and GABA systems as target for novel antidepressant and mood-stabilizing treatment,” Mol. Psychiat., 7, No. 1, S71–S80 (2002).

    Article  CAS  Google Scholar 

  30. K. Maubach, N. M. J. Rupniak, M. S. Kramer, and R. G. Hill, “Novel strategies for pharmacotherapy of depression,” Curr. Opin. Chem. Biol., 3, No. 4, 481–488 (1999).

    Article  PubMed  CAS  Google Scholar 

  31. W. C. Drevets, T. O. Videen, J. L. Price, et al., “A functional anatomical study of unipolar depression,” J. Neurosci., 12, No. 6, 3628–3641 (1992).

    PubMed  CAS  Google Scholar 

  32. I. I. Abramets, Yu. V. Kuznetsov, and I. M. Samoilovich, “Behavioral depression-related modifications of the properties of glutamatergic synapses in the basolateral amygdalar nucleus in rats,” Neurophysiology, 34, No. 4, 273–282 (2002).

    Article  CAS  Google Scholar 

  33. I. I. Abramets, Yu. V. Kidin, Yu. V. Kuznetsov, and A. N. Talalaenko, “Effects of behavioral depression and chronic influence of antidepressants on NMDA/glutamate receptor-mediated responses of neurons of the rat gyrus dentatus,” Neurophysiology, 37, No. 2, 111–119 (2005).

    Article  CAS  Google Scholar 

  34. P. Skolnic, “Antidepressants for the new millenium,” Eur. J. Pharmacol., 375, No. 1, 31–40 (1999).

    Article  Google Scholar 

  35. I. A. Paul, G. Nowak, R. T. Layer, et al., “Adaptation of N-methyl-D-aspartate receptor complex following chronic antidepressant treatments,” J. Pharmacol. Exp. Ther., 269, No. 1, 95–102 (1994).

    PubMed  CAS  Google Scholar 

  36. G. E. Grane, “The psychotropic effect of cycloserine: A new use of an antibiotic,” Comp. Psychiat., 2, No. 1, 51–59 (1961).

    Article  Google Scholar 

  37. R. M. Berman, A. Cappiello, A. Anand, et al., “Antidepressant effects of ketamine in depressed patients,” Biol. Psychiat., 47, No. 2, 351–354 (2000).

    Article  PubMed  CAS  Google Scholar 

  38. C. De Felipe, J. F. Herrero, J. A. O’Brien, et al., “Altered nociception, analgesia and aggression in mice lacking the receptor for substance P,” Nature, 392, 394–397 (1998).

    Article  PubMed  Google Scholar 

  39. M. S. Kramer, N. Culter, J. Feighner, et al., “Distinct mechanism for antidepressant activity by blockade of central substance P receptors,” Science, 281, 1640–1645 (1998).

    Article  PubMed  CAS  Google Scholar 

  40. Y. Shiriyama, H. Mitsushio, M. Takashima, et al., “Reduction of substance P after chronic antidepressant treatment in the striatum, substantia nigra and amygdala of the rat,” Brain Res., 739, No. 1, 70–78 (1996).

    Article  Google Scholar 

  41. F. C. Raadsheer, J. J. van Heerikhuize, and P. J. Lucassen, “Corticotropin-releasing hormone mRNA in paraventricular nucleus of patients with Alzheimer’s disease and depression,” Am. J. Psychiat., 152, No. 5, 1372–1376 (1995).

    PubMed  CAS  Google Scholar 

  42. G. W. Smith, J. M. Aubry, F. Dellu, et al., “Corticotropin releasing factor receptor 1-deficent mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development,” Neuron, 20, No. 4, 1093–1102 (1998).

    Article  PubMed  CAS  Google Scholar 

  43. T. L. Bale, A. Contarino, G. W. Smith, et al., “Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behavior and are hypersensitive to stress,” Nat. Gen., 24, No. 4, 410–414 (2000).

    Article  CAS  Google Scholar 

  44. R. S. Mansbach, E. N. Brooks, and Y. L. Chen, “Antidepressant-like effects of CP-154,526, a selective CRF1 receptor antagonist,” Eur. J. Pharmacol., 323, No. 1, 21–26 (1997).

    Article  PubMed  CAS  Google Scholar 

  45. M. E. Keck, T. Welt, A. Wigger, et al., “The anxiolytic effect of CRH1 receptor antagonist R121919 depends on innate emotionality in rats,” Eur. J. Neurosci., 13, No. 2, 373–380 (2001).

    Article  PubMed  CAS  Google Scholar 

  46. M. Lancel, A. Wigger, F. Holsboer, et al., “Anxiety-related effects in the sleep response to stress are mediated by hypothalamo-pituitary-adrenal (HPA) axis and attenuated by R121919,” Soc. Neurosci. Abstr., 26, 807–813 (2000).

    Google Scholar 

  47. A. W. Zobel, T. Nickel, H. E. Kunzel, et al., “Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients,” J. Psychiat. Res., 34, No. 2, 171–181 (2000).

    Article  PubMed  CAS  Google Scholar 

  48. R. McQuade and A. H. Young, “Future therapeutic targets in mood disorder: The glucocorticoid receptor,” Br. J. Psychiat., 177, No. 2, 390–395 (2000).

    Article  CAS  Google Scholar 

  49. R. Horowski, S. Sastre, and M. Hernandez, “Clinical effect of the neurotrophic selective cAMP phosphodiesterase inhibitor rolipram in depressed patients: Global evaluation of the preliminary reports,” Curr. Ther. Res., 38, No. 1, 23–29 (1985).

    Google Scholar 

  50. R. S. Duman, G. R. Heninger, and E. J. Nestler, “A molecular and cellular theory of depression,” Arch. Gen. Psychiat., 54, 597–606 (1997).

    PubMed  CAS  Google Scholar 

  51. M. Nibuya, S. Morinobu, and R. S. Duman, “Regulation of BDNF and trk B mRNA following chronic electroconvulsive seizure and antidepressant drug treatments,” J. Neurosci., 15, No. 11, 7539–7547 (1995).

    PubMed  CAS  Google Scholar 

  52. T. Hayashi, H. Umemori, M. Mishina, and T. Yamamoto, “The AMPA receptor interactions with and signals through the protein tyrosine kinase Lyn,” Nature, 397, 72–76 (1999).

    Article  PubMed  CAS  Google Scholar 

  53. H. P. Blumberg, E. Stern, S. Ricketts, et al., “Rostral and orbital prefrontal cortex dysfunction in the manic state of bipolar disorder,” Am. J. Psychiat., 156, No. 6, 1986–1988 (1999).

    PubMed  CAS  Google Scholar 

  54. H. P. Blumberg, E. Stern, D. Martinez, et al., “Increased anterior cingulate and caudate activity in bipolar mania,” Biol. Psychiat., 48, No. 5, 1045–1052 (2000).

    Article  PubMed  CAS  Google Scholar 

  55. J. F. Dixon and L. E. Hokin, “Lithium acutely inhibits and chronically up-regulates and stabilizes glutamate uptake by presynaptic nerve endings in mouse cerebral cortex,” Proc. Natl. Acad. Sci. USA, 95, No. 10, 8363–8368 (1998).

    Article  PubMed  CAS  Google Scholar 

  56. S. Nonaka, C. J. Hough, and D. M. Chuang, “Chronic lithium treatment robustly protects neurons in the central nervous system against exitotoxicity by inhibiting N-methyl-D-aspartate receptor-mediated calcium influx,” Proc. Natl. Acad. Sci. USA, 95, No. 3, 2642–2647 (1998).

    Article  PubMed  CAS  Google Scholar 

  57. R. Lingamaneni and H. C. Hemmings, “Effects of anticonvulsants on veratridine-and KCl-evoked glutamate release from cortical synaptosomes,” Neurosci. Lett., 276, No. 2, 127–130 (1999).

    Article  PubMed  CAS  Google Scholar 

  58. H. K. Manji, J. M. Bebchuk, G. J. Moore, et al., “Modulation of CNS signal transduction pathways and gene expression by mood-stabilizing agents: therapeutic implications,” J. Clin. Psychiat., 60, Suppl. 2, 27–39 (1999).

    Google Scholar 

  59. M. J. Berridge, C. P. Downes, and M. R. Hanley, “Neural and developmental actions of lithium: a unifying hypothesis,” Cell, 59, No. 3, 411–419 (1989).

    Article  PubMed  CAS  Google Scholar 

  60. P. S. Klein and D. A. A. Melton, “A molecular mechanism for the effect of lithium on development,” Proc. Natl. Acad. Sci. USA, 93, No. 10, 8455–8459 (1996).

    Article  PubMed  CAS  Google Scholar 

  61. C. Phiel, “Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen,” J. Biol. Chem., 276, 36734–36741 (2001).

    Article  PubMed  CAS  Google Scholar 

  62. R. S. B. Williams, L. M. Cheng, A. W. Mudge, and A. J. Harwood, “A common mechanism of action for three mood-stabilizing drugs,” Nature, 417, 292–295 (2002).

    Article  PubMed  CAS  Google Scholar 

  63. M. Maes, “Alteration in plasma prolyl endopeptidase activity in depression, mania, and schizophrenia: effect of antidepressants, mood stabilizers, and antipsychotic drugs,” Psychiat. Res., 58, No. 2, 217–225 (1995).

    Article  CAS  Google Scholar 

  64. H. U. Demuth, “Design of (omega-N-(O-acyl)hydroxyamide) aminodicarboxylic acid pyrrolidides as potent inhibitors of proline-specific peptidases,” FEBS Lett., 320, No. 1, 23–27 (1993).

    Article  PubMed  CAS  Google Scholar 

  65. C. P. Vandermaelen and G. K. Aghajanian, “Electrophysiological and pharmacological characterization of serotonin dorsal raphe neurons recorded extracellularly and intracellularly in rat brain slices,” Brain Res., 289, No. 1, 109–119 (1983).

    Article  PubMed  CAS  Google Scholar 

  66. B. Jacobs and E. Azmitia, “Structure and function of the brain serotonin system,” Physiol. Rev., 72, No. 2, 165–229 (1992).

    PubMed  CAS  Google Scholar 

  67. N. J. Penington, J. S. Kelly, and A. P. Fox, “Whole-cell recordings of inwardly rectifying K+ currents activated by 5-HT1A receptors on dorsal raphe neurons of the adult rat,” J. Physiol., 469, 387–405 (1993).

    PubMed  CAS  Google Scholar 

  68. G. K. Aghajanian, “Modulation of transient outward current in serotonergic neurons by alpha1-adrenoceptors,” Nature, 315, 501–503 (1985).

    Article  PubMed  CAS  Google Scholar 

  69. K. Starke, M. Gothert, and H. Kilbinger, “Modulation of neurotransmitter release by presynaptic autoreceptors,” Physiol. Rev., 69, No. 4, 864–988 (1989).

    PubMed  CAS  Google Scholar 

  70. Y. Chaput, P. Lesieur, and C. de Motigny, “Effect of short-term serotonin depletion on the efficacy of serotonin neurotransmission: Electrophysiological studies in the rat central nervous system,” Synapse, 6, No. 3, 328–337 (1990).

    Article  PubMed  CAS  Google Scholar 

  71. P. Blier, R. Mongeau, M. Weiss, and C. de Motugny, “Modulation of serotonin neurotransmission by presynaptic alpha-2-adrenergic receptors: A target for antidepressant pharmacotherapy,” in: New Pharmacological Approaches to the Therapy of Depressive Disorders, J. Mendlewicz et al. (eds.), Vol. 5, Karger, Basel (1993), pp. 74–82.

    Google Scholar 

  72. G. Pineyro and P. Blier, “Autoregulation of serotonin neurons: Role in antidepressant drug action,” Pharmacol. Rev., 51, No. 3, 533–591 (1999).

    PubMed  CAS  Google Scholar 

  73. D. G. Amaral, “The locus coeruleus: Neurobiology of a central noradrenergic nucleus,” Prog. Neurobiol., 9, No. 1, 147–196 (1977).

    Article  PubMed  CAS  Google Scholar 

  74. J. Marwaha and G. K. Aghajanian, “Relative potencies of alpha1-and alpha2-antagonists in the locus coeruleus, dorsal raphe and lateral geniculate nuclei: An electrophysiology study,” J. Pharmacol. Exp. Ther., 222, No. 2, 287–293 (1982).

    PubMed  CAS  Google Scholar 

  75. N. Haddjeri, C. de Montigni, and P. Blier, “Modulation of the firing activity of noradrenergic neurons in the rat locus coeruleus by the 5-hydroxytryptamine system,” Br. J. Pharmacol., 120, No. 3, 865–875 (1997).

    Article  PubMed  CAS  Google Scholar 

  76. M. Segal, “Serotonergic innervation of the locus coeruleus from the dorsal raphe and its action on responses to noxious stimuli,” J. Physiol., 286, No. 2, 401–415 (1979).

    PubMed  CAS  Google Scholar 

  77. G. Aston-Jones, M. Ennis, V. A. Pieribone, et al., “The brain nucleus locus coeruleus: Restricted afferent control of a broad efferent network,” Science, 234, 734–737 (1986).

    Article  PubMed  CAS  Google Scholar 

  78. A. Gobert, J.-M. Rivet, V. Audinot, et al., “Simultaneous quantification of serotonin, dopamine and noradrenaline levels in single frontal cortex dialysates of freely-moving rats reveals a complex pattern of reciprocal auto-and heteroreceptor-mediated control of release,” Neuroscience, 84, No. 2, 413–429 (1998).

    Article  PubMed  CAS  Google Scholar 

  79. M. J. Millan, A. Dekeyne, and A. Gobert, “Serotonin (5-HT)2C receptors tonically inhibit dopamine (DA) and noradrenaline (NAD), but not 5-HT release in the frontal cortex in vivo,” Neuropharmacology, 37, No. 3, 953–955 (1998).

    Article  PubMed  CAS  Google Scholar 

  80. F. H. Gage, A. Bjorklund, and U. Stenevi, “Local regulation of compensatory noradrenegic hyperactivity in the partially denervated hippocampus,” Nature, 303, 819–821 (1983).

    Article  PubMed  CAS  Google Scholar 

  81. L. Descarries, K. C. Watkins, and J. Lapierre, “Noradrenergic axon terminals in the cerebral cortex of rat. III. Topometric ultrastructural analysis,” Brain Res., 133, No. 1, 197–222 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Neirofiziologiya/Neurophysiology, Vol. 40, No. 1, pp. 69–85, January–February, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abramets, I.I. Neurophysiological and neurochemical aspects of the effects of antidepressants and mood stabilizers. Neurophysiology 40, 64–78 (2008). https://doi.org/10.1007/s11062-008-9015-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-008-9015-6

Keywords

Navigation