Skip to main content
Log in

Electrical activity of rat retinal ganglion cells

  • Published:
Neurophysiology Aims and scope

Abstract

The electrical activity of rat retinal ganglion cells is described. It was found that most such cells generate tonic discharges, while cells that demonstrate a phasic type of activity are less numerous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Tabata and M. Kano, “Heterogeneous intrinsic firing properties of vertebrate retinal ganglion cells,” J. Neurophysiol., 87, No. 1, 30–41 (2002).

    PubMed  Google Scholar 

  2. G. Y. Wang, G. Ratto, S. Bisti, et al., “Functional development of intrinsic properties in ganglion cells of the mammalian retina,” J. Neurophysiol., 78, No. 6, 2895–2903 (1997).

    PubMed  CAS  Google Scholar 

  3. B. J. O’Brien, T. Isayama, R. Richardson, et al., “Intrinsic physiological properties of cat retinal ganglion cells,” J. Physiol., 538, No. 3, 787–802 (2002).

    Article  PubMed  CAS  Google Scholar 

  4. H. Taschenberger, R. Juttner, and R. Grantyn, “Ca2+-permeable P2X receptor channels in cultured rat retinal ganglion cells,” J. Neurosci., 19, No. 9, 3353–3366 (1999).

    PubMed  CAS  Google Scholar 

  5. A. Ozaita, J. Petit-Jacques, B. Volgyi, et al., “A unique role for Kv3 voltage-gated potassium channels in starburst amacrine cell signaling in mouse retina,” J. Neurosci., 24, No. 33, 7335–7343 (2004).

    Article  PubMed  CAS  Google Scholar 

  6. A. Erisir, D. Lau, B. Rudy, et al., “Function of specific K+ channels in sustained high-frequency firing of fast-spiking neocortical interneurons,” J. Neurophysiol., 82, No. 5, 2476–2489 (1999).

    PubMed  CAS  Google Scholar 

  7. C. C. Lien and P. Jonas, “Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons,” J. Neurosci., 23, No. 6, 2058–2068 (2003).

    PubMed  CAS  Google Scholar 

  8. J. Henne, S. Pottering, and G. Jeserich, “Voltage-gated potassium channels in retinal ganglion cells of trout: a combined biophysical, pharmacological, and single-cell RT-PCR approach,” J. Neurosci. Res., 62, No. 5, 629–637 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. B. Rudy, A. Chow, D. Lau, et al., “Contributions of Kv3 channels to neuronal excitability,” Ann. N.Y. Acad. Sci., 868, 304–343 (1999).

    Article  PubMed  CAS  Google Scholar 

  10. B. Rudy and C. J. McBain, “Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing,” Trends Neurosci., 24, No. 9, 517–526 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Kolodin.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 382–384, July–October, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolodin, Y.A., Veselovsky, N.S., Veselovskaya, N.N. et al. Electrical activity of rat retinal ganglion cells. Neurophysiology 39, 334–336 (2007). https://doi.org/10.1007/s11062-007-0048-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-007-0048-z

Keywords

Navigation