Skip to main content
Log in

Synaptic function and modulation of glycine receptor channels in the hypoglossal nucleus

  • Published:
Neurophysiology Aims and scope

Abstract

In this review, we discuss the function and modulation of chloride-selective glycine receptor (GlyR) channels, some genetic diseases originated from dysfunction of GlyRs, and modulation of glycinergic synapses by intracellular calcium (Ca2+) with particular attention on the motoneurons of the hypoglossal nucleus. This motor nucleus is a brainstem structure implicated in the command of coordinated movements during oral behavioral phenomena, including feeding, drinking, grooming, and respiration. In this nucleus, more than 90% of its cells are motoneurons. These hypoglossal motoneurons (HMs) are involved in a variety of motor functions and exhibit two remarkable features: (i) a low endogenous Ca2+ buffering capacity, which determines the rapid dynamics of cytosolic intracellular Ca2+, and (ii) powerful glycinergic inputs, which determine the main inhibitory drive on the above cells in adult animals. Glycine receptors belong to the superfamily of Cys-loop ligand-gated ion channels. They are capable of forming functional homo-or heteromeric chloride-selective channels. Dysfunction of GlyRs results in a genetic neurological motor disorders, including hyperekplexia. These diseases originate from mutations in the GlyR gene, leading to a decrease in single channel conductance, a lower affinity to the neurotransmitter, or a low level of GlyR expression. The function of glycinergic synapses is modulated during developmental changes and strictly controlled by several feedback mechanisms at pre-and post-synaptic levels. The developmental modulation consists in switch in the GlyR subunit composition and change in the chloride homeostasis during the synaptic maturation and formation of inhibitory networks. Retrograde signalling plays an important role in the synaptic function of HMs; it provides post-synaptic neurons with efficient tools for controlling pre-synaptic afferents. Glycine receptors and glycinergic synapses are also regulated by intracellular Ca2+. The mechanisms of these modulations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. B. Nemeroff, “The role of GABA in the pathophysiology and treatment of anxiety disorders,” Psychopharmacol. Bull., 37, No. 4, 133–146 (2003).

    PubMed  Google Scholar 

  2. J. W. Lynch, “Molecular structure and function of the glycine receptor chloride channel,” Physiol. Rev., 84, No. 4, 1051–1095 (2004).

    Article  PubMed  CAS  Google Scholar 

  3. B. Laube, G. Maksay, R. Schemm, and H. Betz, “Modulation of glycine receptor function: a novel approach for therapeutic intervention at inhibitory synapses?” Trends Pharmacol. Sci., 23, No. 11, 519–527 (2002).

    Article  PubMed  CAS  Google Scholar 

  4. R. Cossart, C. Bernard, and Y. Ben-Ari, “Multiple facets of GABAergic neurons and synapses: multiple fates of GABA signalling in epilepsies,” Trends Neurosci., 28, No. 2, 108–115 (2005).

    Article  PubMed  CAS  Google Scholar 

  5. R. Werman, R. A. Davidoff, and M. H. Aprison, “Inhibitory of glycine on spinal neurons in the cat,” J. Neurophysiol., 31, No. 1, 81–95 (1968).

    PubMed  CAS  Google Scholar 

  6. H. Betz, “Structure and function of inhibitory glycine receptors,” Quart. Rev. Biophys., 25, No. 4, 381–394 (1992).

    CAS  Google Scholar 

  7. S. Rajendra, J. W. Lynch, and P. R. Schofield, “The glycine receptor,” Pharmacol. Ther., 73, No. 2, 121–146 (1997).

    Article  PubMed  CAS  Google Scholar 

  8. P. Legendre, “The glycinergic inhibitory synapse,” Cell Mol. Life Sci., 58, Nos. 5/6, 760–793 (2001).

    Article  PubMed  CAS  Google Scholar 

  9. B. Lopez-Corcuera, A. Geerlings, and C. Aragon, “Glycine neurotransmitter transporters: an update,” Mol. Membrane Biol., 18, No. 1, 13–20 (2001).

    CAS  Google Scholar 

  10. S. Maione, I. Marabese, F. Rossi, et al., “Effects of persistent nociception on periaqueductal gray glycine release,” Neuroscience, 97, No. 2, 311–316 (2000).

    Article  PubMed  CAS  Google Scholar 

  11. R. J. Harvey, U. B. Depner, H. Wassle, et al., “GlyR alpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization,” Science, 304, No. 5672, 884–887 (2004).

    Article  PubMed  CAS  Google Scholar 

  12. C. M. Becker, “Disorders of the inhibitory glycine receptor: the spastic mouse,” FASEB J., 4, No. 10, 2767–2774 (1990).

    PubMed  CAS  Google Scholar 

  13. A. Karlin, “Emerging structure of the nicotinic acetylcholine receptors,” Nat. Rev. Neurosci., 3, No. 2, 102–114 (2002).

    Article  PubMed  CAS  Google Scholar 

  14. H. Betz, “Ligand-gated ion channels in the brain: the amino acid receptor superfamily,” Neuron, 5, No. 4, 383–392 (1990).

    Article  PubMed  CAS  Google Scholar 

  15. H. Betz, J. Kuhse, V. Schmieden, et al., “Structure and functions of inhibitory and excitatory glycine receptors,” Ann. N. Y. Acad. Sci., 868, 667–676 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. B. David-Watine, C. Goblet, D. De Saint Jan, et al., “Cloning, expression and electrophysiological characterization of glycine receptor alpha subunit from zebrafish,” Neuroscience, 90, No. 1, 303–317 (1999).

    Article  PubMed  CAS  Google Scholar 

  17. M. Imboden, D. De Saint Jan, F. Leulier, et al., “Isolation and characterization of an alpha 2-type zebrafish glycine receptor subunit,” Neuroscience, 103, No. 3, 799–810 (2001).

    Article  PubMed  CAS  Google Scholar 

  18. V. Devignot, C. L. Prado De, P. Bregestovski, and C. Goblet, “A novel glycine receptor alpha Z1 subunit variant in the zebrafish brain,” Neuroscience, 122, No. 2, 449–457 (2003).

    Article  PubMed  CAS  Google Scholar 

  19. G. Grenningloh, A. Rienitz, B. Schmitt, et al., “The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors,” Nature, 328, No. 6127, 215–220 (1987).

    Article  PubMed  CAS  Google Scholar 

  20. G. Grenningloh, V. Schmieden, P. R. Schofield, et al., “Alpha subunit variants of the human glycine receptor: primary structures, functional expression and chromosomal localization of the corresponding genes,” EMBO J., 9, No. 3, 771–776 (1990).

    PubMed  CAS  Google Scholar 

  21. G. Grenningloh, I. Pribilla, P. Prior, et al., “Cloning and expression of the 58 kd beta subunit of the inhibitory glycine receptor,” Neuron, 4, No. 6, 963–970 (1990).

    Article  PubMed  CAS  Google Scholar 

  22. C. M. Becker, W. Hoch, and H. Betz, “Glycine receptor heterogeneity in rat spinal cord during postnatal development,” EMBO J., 7, No. 12, 3717–3726 (1988).

    PubMed  CAS  Google Scholar 

  23. H. Akagi, K. Hirai, and F. Hishinuma, “Cloning of a glycine receptor subtype expressed in rat brain and spinal cord during a specific period of neuronal development,” FEBS Lett., 281, Nos. 1/2, 160–166 (1991).

    Article  PubMed  CAS  Google Scholar 

  24. M. L. Malosio, B. Marqueze-Pouey, J. Kuhse, and H. Betz, “Widespread expression of glycine receptor subunit mRNAs in the adult and developing rat brain,” EMBO J., 10, No. 9, 2401–2409 (1991).

    PubMed  CAS  Google Scholar 

  25. T. Takahashi, A. Momiyama, K. Hirai, et al., “Functional correlation of fetal and adult forms of glycine receptors with developmental changes in inhibitory synaptic receptor channels,” Neuron, 9, No. 6, 1155–1161 (1992).

    Article  PubMed  CAS  Google Scholar 

  26. R. J. Harvey, V. Schmieden, H. A. Von, et al., “Glycine receptors containing the alpha4 subunit in the embryonic sympathetic nervous system, spinal cord and male genital ridge,” Eur. J. Neurosci., 12, No. 3, 994–1001 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. S. Fucile, D. De Saint Jan, B. David-Watine, et al., “Comparison of glycine and GABA actions on the zebrafish homomeric glycine receptor,” J. Physiol, 517, Part 2, 369–383 (1999).

    Article  PubMed  CAS  Google Scholar 

  28. D. De Saint Jan, B. David-Watine, H. Korn, and P. Bregestovski, “Activation of human alpha1 and alpha2 homomeric glycine receptors by taurine and GABA,” J. Physiol, 535, Part 3, 741–755 (2001).

    Article  Google Scholar 

  29. I. Pribilla, T. Takagi, D. Langosch, J. Bormann, and H. Betz, “The atypical M2 segment of the beta subunit confers picrotoxinin resistance to inhibitory glycine receptor channels,” EMBO J., 11, No. 12, 4305–4311 (1992).

    PubMed  CAS  Google Scholar 

  30. N. Rundstrom, V. Schmieden, H. Betz, J. Bormann, and D. Langosch, “Cyanotriphenylborate: subtype-specific blocker of glycine receptor chloride channels,” Proc. Natl. Acad. Sci. USA, 91, No. 19, 8950–8954 (1994).

    Article  PubMed  CAS  Google Scholar 

  31. B. S. Zhorov and P. D. Bregestovski, “Chloride channels of glycine and GABA receptors with blockers: Monte Carlo minimization and structure-activity relationships,” Biophys. J., 78, No. 4, 1786–1803 (2000).

    PubMed  CAS  Google Scholar 

  32. S. G. Ryan, M. J. Dixon, M. A. Nigro, et al., “Genetic and radiation hybrid mapping of the hyperekplexia region on chromosome 5q,” Am. J. Hum. Genet., 51, No. 6, 1334–1343 (1992).

    PubMed  CAS  Google Scholar 

  33. P. Brown, “Neurophysiology of the startle syndrome and hyperekplexia,” Adv. Neurol., 89, 153–159 (2002).

    PubMed  Google Scholar 

  34. F. Andermann, D. L. Keene, E. Andermann, and L. F. Quesney, “Startle disease or hyperekplexia: further delineation of the syndrome,” Brain, 103, No. 4, 985–997 (1980).

    Article  PubMed  CAS  Google Scholar 

  35. M. A. Nigro and H. C. Lim, “Hyperekplexia and sudden neonatal death,” Pediat. Neurol., 8, No. 3, 221–225 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. M. N. Vergouwe, M. A. Tijssen, A. C. Peters, et al., “Hyperekplexia phenotype due to compound heterozygosity for GLRA1 gene mutations,” Ann. Neurol., 46, No. 4, 634–638 (1999).

    Article  PubMed  CAS  Google Scholar 

  37. B. Vafa and P. R. Schofield, “Heritable mutations in the glycine, GABAA, and nicotinic acetylcholine receptors provide new insights into the ligand-gated ion channel receptor superfamily,” Int. Rev. Neurobiol., 42, 285–332 (1998).

    Article  PubMed  CAS  Google Scholar 

  38. M. I. Rees, T. M. Lewis, B. Vafa, et al., “Compound heterozygosity and nonsense mutations in the alpha(1)-subunit of the inhibitory glycine receptor in hyperekplexia,” Hum. Genet., 109, No. 3, 267–270 (2001).

    Article  PubMed  CAS  Google Scholar 

  39. E. Coto, D. Armenta, R. Espinosa, et al., “Recessive hyperekplexia due to a new mutation (R100H) in the GLRA1 gene,” Mov. Disord., 20, No. 12, 1626–1629 (2005).

    Article  PubMed  Google Scholar 

  40. D. Langosch, B. Laube, N. Rundstrom, et al., “Decreased agonist affinity and chloride conductance of mutant glycine receptors associated with human hereditary hyperekplexia,” EMBO J., 13, No. 18, 4223–4228 (1994).

    PubMed  CAS  Google Scholar 

  41. S. Rajendra, J. W. Lynch, K. D. Pierce, et al., “Mutation of an arginine residue in the human glycine receptor transforms beta-alanine and taurine from agonists into competitive antagonists,” Neuron, 14, No. 1, 169–175 (1995).

    Article  PubMed  CAS  Google Scholar 

  42. T. M. Lewis, L. G. Sivilotti, D. Colquhoun, et al., “Properties of human glycine receptors containing the hyperekplexia mutation alpha1(K276E), expressed in Xenopus oocytes,” J. Physiol, 507, Part 1, 25–40 (1998).

    Article  PubMed  CAS  Google Scholar 

  43. A. J. Plested, P. J. Groot-Kormelink, D. Colquhoun, and L. G. Sivilotti, “Single-channel study of the spasmodic mutation alpha1a52s in recombinant rat glycine receptors,” J. Physiol, 581, Part 1, 51–73 (2007).

    Article  PubMed  CAS  Google Scholar 

  44. J. B. Stephenson, “Vigabatrin for startle-disease with altered cerebrospinal-fluid free gamma-aminobutyric acid,” Lancet, 340, No. 8816, 430–431 (1992).

    Article  PubMed  CAS  Google Scholar 

  45. M. A. Tijssen, H. C. Schoemaker, P. J. Edelbroek, et al., “The effects of clonazepam and vigabatrin in hyperekplexia,” J. Neurol. Sci., 149, No. 1, 63–67 (1997).

    Article  PubMed  CAS  Google Scholar 

  46. L. Zhou, K. L. Chillag, and M. A. Nigro, “Hyperekplexia: a treatable neurogenetic disease,” Brain Dev., 24, No. 7, 669–674 (2002).

    Article  PubMed  Google Scholar 

  47. F. Viana, L. Gibbs, and A. J. Berger, “Double-and triple-labeling of functionally characterized central neurons projecting to peripheral targets studied in vitro,” Neuroscience, 38, No. 3, 829–841 (1990).

    Article  PubMed  CAS  Google Scholar 

  48. N. L. Chamberlin, C. M. Bocchiaro, R. W. Greene, and J. L. Feldman, “Nicotinic excitation of rat hypoglossal motoneurons,” Neuroscience, 115, No. 3, 861–870 (2002).

    Article  PubMed  CAS  Google Scholar 

  49. G. D. Funk, J. C. Smith, and J. L. Feldman, “Generation and transmission of respiratory oscillations in medullary slices: role of excitatory amino acids,” J. Neurophysiol., 70, No. 4, 1497–1515 (1993).

    PubMed  CAS  Google Scholar 

  50. L. D. Aldes, R. B. Chronister, and L. A. Marco, “Distribution of glutamic acid decarboxylase and gamma-aminobutyric acid in the hypoglossal nucleus in the rat,” J. Neurosci. Res., 19, No. 3, 343–348 (1988).

    Article  PubMed  CAS  Google Scholar 

  51. J. C. Rekling, “Interaction between thyrotropin-releasing hormone (TRH) and NMDA-receptor-mediated responses in hypoglossal motoneurones,” Brain Res., 578, Nos. 1/2, 289–296 (1992).

    Article  PubMed  CAS  Google Scholar 

  52. C. C. Yang, J. Y. Chan, and S. H. Chan, “Excitatory innervation of caudal hypoglossal nucleus from nucleus reticularis gigantocellularis in the rat,” Neuroscience, 65, No. 2, 365–374 (1995).

    Article  PubMed  CAS  Google Scholar 

  53. Y. Q. Li, M. Takada, T. Kaneko, and N. Mizuno, “Distribution of GABAergic and glycinergic premotor neurons projecting to the facial and hypoglossal nuclei in the rat,” J. Comp Neurol., 378, No. 2, 283–294 (1997).

    Article  PubMed  CAS  Google Scholar 

  54. J. A. O’Brien, J. S. Isaacson, and A. J. Berger, “NMDA and non-NMDA receptors are co-localized at excitatory synapses of rat hypoglossal motoneurons,” Neurosci. Lett., 227, No. 1, 5–8 (1997).

    Article  PubMed  CAS  Google Scholar 

  55. J. C. Rekling, G. D. Funk, D. A. Bayliss, et al., “Synaptic control of motoneuronal excitability,” Physiol. Rev., 80, No. 2, 767–852 (2000).

    PubMed  CAS  Google Scholar 

  56. J. Zhang and P. Luo, “Ultrastructural features of synapse from dorsal parvocellular reticular formation neurons to hypoglossal motoneurons of the rat,” Brain Res., 963, Nos. 1/2, 262–273 (2003).

    Article  PubMed  CAS  Google Scholar 

  57. A. A. Lowe, “The neural regulation of tongue movements,” Prog. Neurobiol., 15, No. 4, 295–344 (1980).

    Article  PubMed  CAS  Google Scholar 

  58. D. Bartlett, Jr., J. C. Leiter, and S. L. Knuth, “Control and actions of the genioglossus muscle,” Prog. Clin. Biol. Res., 345, 99–107 (1990).

    PubMed  Google Scholar 

  59. J. H. Peever and J. Duffin, “Respiratory control of hypoglossal motoneurons,” Adv. Exp. Med. Biol., 499, 101–106 (2001).

    PubMed  CAS  Google Scholar 

  60. L. D. Aldes, “Subcompartmental organization of the ventral (protrusor) compartment in the hypoglossal nucleus of the rat,” J. Comp Neurol., 353, No. 1, 89–108 (1995).

    Article  PubMed  CAS  Google Scholar 

  61. R. A. Fay and R. Norgren, “Identification of rat brainstem multisynaptic connections to the oral motor nuclei using pseudorabies virus. III. Lingual muscle motor systems,” Brain Res. Brain Res. Rev., 25, No. 3, 291–311 (1997).

    Article  PubMed  CAS  Google Scholar 

  62. E. G. Dobbins and J. L. Feldman, “Differential innervation of protruder and retractor muscles of the tongue in rat,” J. Comp. Neurol., 357, No. 3, 376–394 (1995).

    Article  PubMed  CAS  Google Scholar 

  63. Y. Sahara, N. Hashimoto, and Y. Nakamura, “Hypoglossal premotor neurons in the rostral medullary parvocellular reticular formation participate in cortically-induced rhythmical tongue movements,” Neurosci. Res., 26, No. 2, 119–131 (1996).

    Article  PubMed  CAS  Google Scholar 

  64. J. H. Singer and A. J. Berger, “Development of inhibitory synaptic transmission to motoneurons,” Brain Res. Bull., 53, No. 5, 553–560 (2000).

    Article  PubMed  CAS  Google Scholar 

  65. R. C. Borke, M. E. Nau, and R. L. Ringler, Jr., “Brain stem afferents of hypoglossal neurons in the rat,” Brain Res., 269, No. 1, 47–55 (1983).

    Article  PubMed  CAS  Google Scholar 

  66. M. Takada, K. Itoh, Y. Yasui, et al., “Distribution of premotor neurons for the hypoglossal nucleus in the cat,” Neurosci. Lett., 52, Nos. 1/2, 141–146 (1984).

    Article  PubMed  CAS  Google Scholar 

  67. G. Holstege, “Some anatomical observations on the projections from the hypothalamus to brainstem and spinal cord: an HRP and autoradiographic tracing study in the cat,” J. Comp Neurol., 260, No. 1, 98–126 (1987).

    Article  PubMed  CAS  Google Scholar 

  68. Y. Q. Li, M. Takada, and N. Mizuno, “Identification of premotor interneurons which project bilaterally to the trigeminal motor, facial or hypoglossal nuclei: a fluorescent retrograde double-labeling study in the rat,” Brain Res., 611, No. 1, 160–164 (1993).

    Article  PubMed  CAS  Google Scholar 

  69. G. Ugolini, “Specificity of rabies virus as a transneuronal tracer of motor networks: transfer from hypoglossal motoneurons to connected second-order and higher order central nervous system cell groups,” J. Comp. Neurol., 356, No. 3, 457–480 (1995).

    Article  PubMed  CAS  Google Scholar 

  70. M. B. Lips and B. U. Keller, “Endogenous calcium buffering in motoneurones of the nucleus hypoglossus from mouse,” J. Physiol., 511, Part 1, 105–117 (1998).

    Article  PubMed  CAS  Google Scholar 

  71. M. B. Lips and B. U. Keller, “Activity-related calcium dynamics in motoneurons of the nucleus hypoglossus from mouse,” J. Neurophysiol., 82, No. 6, 2936–2946 (1999).

    PubMed  CAS  Google Scholar 

  72. J. Palecek, M. B. Lips, and B. U. Keller, “Calcium dynamics and buffering in motoneurons of the mouse spinal cord,” J. Physiol., 520, Part 2, 485–502 (1999).

    Article  PubMed  CAS  Google Scholar 

  73. B. K. Vanselow and B. U. Keller, “Calcium dynamics and buffering in oculomotor neurones from mouse that are particularly resistant during amyotrophic lateral sclerosis (ALS)-related motoneurone disease,” J. Physiol., 525, Part 2, 433–445 (2000).

    Article  PubMed  CAS  Google Scholar 

  74. M. Umemiya and A. J. Berger, “Inhibition by riluzole of glycinergic postsynaptic currents in rat hypoglossal motoneurons,” Br. J. Pharmacol., 116, No. 8, 3227–3230 (1995).

    PubMed  CAS  Google Scholar 

  75. J. H. Singer, E. M. Talley, D. A. Bayliss, and A. J. Berger, “Development of glycinergic synaptic transmission to rat brain stem motoneurons,” J. Neurophysiol., 80, No. 5, 2608–2620 (1998).

    PubMed  CAS  Google Scholar 

  76. T. Ladewig and B. U. Keller, “Simultaneous patch-clamp recording and calcium imaging in a rhythmically active neuronal network in the brainstem slice preparation from mouse,” Pflügers Arch., 440, No. 2, 322–332 (2000).

    Article  PubMed  CAS  Google Scholar 

  77. E. Neher, “The use of fura-2 for estimating Ca buffers and Ca fluxes,” Neuropharmacology, 34, No. 11, 1423–1442 (1995).

    Article  PubMed  CAS  Google Scholar 

  78. E. Neher and G. J. Augustine, “Calcium gradients and buffers in bovine chromaffin cells,” J. Physiol., 450, 273–301 (1992).

    PubMed  CAS  Google Scholar 

  79. F. Helmchen, J. G. Borst, and B. Sakmann, “Calcium dynamics associated with a single action potential in a CNS presynaptic terminal,” Biophys. J., 72, No. 3, 1458–1471 (1997).

    PubMed  CAS  Google Scholar 

  80. L. Fierro and I. Llano, “High endogenous calcium buffering in purkinje cells from rat cerebellar slices,” J. Physiol., 496, Part 3, 617–625 (1996).

    PubMed  CAS  Google Scholar 

  81. R. Donato and A. Nistri, “Relative contribution by GABA or glycine to Cl-mediated synaptic transmission on rat hypoglossal motoneurons in vitro,” J. Neurophysiol., 84, No. 6, 2715–2724 (2000).

    PubMed  CAS  Google Scholar 

  82. A. Momiyama and T. Takahashi, “Development of inhibitory synaptic currents in rat spinal neurons,” Ann. N. Y. Acad. Sci., 707, 447–448 (1993).

    Article  PubMed  CAS  Google Scholar 

  83. P. Legendre, “A reluctant gating mode of glycine receptor channels determines the time course of inhibitory miniature synaptic events in zebrafish hindbrain neurons,” J. Neurosci., 18, No. 8, 2856–2870 (1998).

    PubMed  CAS  Google Scholar 

  84. A. L. Mueller, R. M. Chesnut, and P. A. Schwartzkroin, “Actions of GABA in developing rabbit hippocampus: an in vitro study,” Neurosci. Lett., 39, No. 2, 193–198 (1983).

    Article  PubMed  CAS  Google Scholar 

  85. A. L. Mueller, J. S. Taube, and P. A. Schwartzkroin, “Development of hyperpolarizing inhibitory postsynaptic potentials and hyperpolarizing response to gamma-aminobutyric acid in rabbit hippocampus studied in vitro,” J. Neurosci., 4, No. 3, 860–867 (1984).

    PubMed  CAS  Google Scholar 

  86. Y. Ben-Ari, E. Cherubini, R. Corradetti, and J. L. Gaiarsa, “Giant synaptic potentials in immature rat CA3 hippocampal neurones,” J. Physiol., 416, 303–325 (1989).

    PubMed  CAS  Google Scholar 

  87. E. Cherubini, C. Rovira, J. L. Gaiarsa, et al., “GABA mediated excitation in immature rat CA3 hippocampal neurons,” Int. J. Dev. Neurosci., 8, No. 4, 481–490 (1990).

    Article  PubMed  CAS  Google Scholar 

  88. G. Chen, P. Q. Trombley, and A. N. Van Den Pol, “Excitatory actions of GABA in developing rat hypothalamic neurones,” J. Physiol., 494, Part 2, 451–464 (1996).

    PubMed  CAS  Google Scholar 

  89. D. F. Owens, L. H. Boyce, M. B. Davis, and A. R. Kriegstein, “Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging,” J. Neurosci., 16, No. 20, 6414–6423 (1996).

    PubMed  CAS  Google Scholar 

  90. A. C. Flint, X. Liu, and A. R. Kriegstein, “Nonsynaptic glycine receptor activation during early neocortical development,” Neuron, 20, No. 1, 43–53 (1998).

    Article  PubMed  CAS  Google Scholar 

  91. K. Kandler and E. Friauf, “Development of glycinergic and glutamatergic synaptic transmission in the auditory brainstem of perinatal rats,” J. Neurosci., 15, No. 10, 6890–6904 (1995).

    PubMed  CAS  Google Scholar 

  92. C. Rivera, J. Voipio, J. A. Payne, et al., “The K+/Clco-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation,” Nature, 397, No. 6716, 251–255 (1999).

    Article  PubMed  CAS  Google Scholar 

  93. J. Kirsch and H. Betz, “Glycine-receptor activation is required for receptor clustering in spinal neurons,” Nature, 392, No. 6677, 717–720 (1998).

    Article  PubMed  CAS  Google Scholar 

  94. A. J. Berger, D. A. Bayliss, and F. Viana, “Modulation of neonatal rat hypoglossal motoneuron excitability by serotonin,” Neurosci. Lett., 143, No. 1–2, 164–168 (1992).

    Article  PubMed  CAS  Google Scholar 

  95. L. Kubin, H. Tojima, R. O. Davies, and A. I. Pack, “Serotonergic excitatory drive to hypoglossal motoneurons in the decerebrate cat,” Neurosci. Lett., 139, No. 2, 243–248 (1992).

    Article  PubMed  CAS  Google Scholar 

  96. M. A. Parkis, D. A. Bayliss, and A. J. Berger, “Actions of norepinephrine on rat hypoglossal motoneurons,” J. Neurophysiol., 74, No. 5, 1911–1919 (1995).

    PubMed  CAS  Google Scholar 

  97. S. R. Selvaratnam, M. A. Parkis, and G. D. Funk, “Developmental modulation of mouse hypoglossal nerve inspiratory output in vitro by noradrenergic receptor agonists,” Brain Res., 805, Nos. 1/2, 104–115 (1998).

    Article  PubMed  CAS  Google Scholar 

  98. B. E. Alger, “Retrograde signaling in the regulation of synaptic transmission: focus on endocannabinoids,” Prog. Neurobiol., 68, No. 4, 247–286 (2002).

    Article  PubMed  CAS  Google Scholar 

  99. M. A. Diana and P. Bregestovski, “Calcium and endocannabinoids in the modulation of inhibitory synaptic transmission,” Cell Calcium, 37, No. 5, 497–505 (2005).

    Article  PubMed  CAS  Google Scholar 

  100. L. Ziskind-Conhaim, B. S. Seebach, and B. X. Gao, “Changes in serotonin-induced potentials during spinal cord development,” J. Neurophysiol., 69, No. 4, 1338–1349 (1993).

    PubMed  CAS  Google Scholar 

  101. M. Umemiya and A. J. Berger, “Presynaptic inhibition by serotonin of glycinergic inhibitory synaptic currents in the rat brain stem,” J. Neurophysiol., 73, No. 3, 1192–1201 (1995).

    PubMed  CAS  Google Scholar 

  102. A. J. Berger and P. Huynh, “Activation of 5HT1B receptors inhibits glycinergic synaptic inputs to mammalian motoneurons during postnatal development,” Brain Res., 956, No. 2, 380–384 (2002).

    Article  PubMed  CAS  Google Scholar 

  103. S. C. Veasey, C. A. Fornal, C. W. Metzler, and B. L. Jacobs, “Response of serotonergic caudal raphe neurons in relation to specific motor activities in freely moving cats,” J. Neurosci., 15, No. 7, Part 2, 5346–5359 (1995).

    PubMed  CAS  Google Scholar 

  104. M. Shen, T. M. Piser, V. S. Seybold, and S. A. Thayer, “Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures,” J. Neurosci., 16, No. 14, 4322–4334 (1996).

    PubMed  CAS  Google Scholar 

  105. I. Katona, B. Sperlagh, A. Sik, et al., “Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons,” J. Neurosci., 19, No. 11, 4544–4558 (1999).

    PubMed  CAS  Google Scholar 

  106. D. L. Misner and J. M. Sullivan, “Mechanism of cannabinoid effects on long-term potentiation and depression in hippocampal CA1 neurons,” J. Neurosci., 19, No. 16, 6795–6805 (1999).

    PubMed  CAS  Google Scholar 

  107. N. Hajos, I. Katona, S. S. Naiem, et al., “Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations,” Eur. J. Neurosci., 12, No. 9, 3239–3249 (2000).

    Article  PubMed  CAS  Google Scholar 

  108. A. F. Hoffman and C. R. Lupica, “Mechanisms of cannabinoid inhibition of GABA(A) synaptic transmission in the hippocampus,” J. Neurosci., 20, No. 7, 2470–2479 (2000).

    PubMed  CAS  Google Scholar 

  109. E. A. Jennings, C. W. Vaughan, and M. J. Christie, “Cannabinoid actions on rat superficial medullary dorsal horn neurons in vitro,” J. Physiol, 534, Part 3, 805–812 (2001).

    Article  PubMed  CAS  Google Scholar 

  110. L. A. Matsuda, S. J. Lolait, M. J. Brownstein, et al., “Structure of a cannabinoid receptor and functional expression of the cloned cDNA,” Nature, 346, No. 6284, 561–564 (1990).

    Article  PubMed  CAS  Google Scholar 

  111. S. Munro, K. L. Thomas, and M. Bu-Shaar, “Molecular characterization of a peripheral receptor for cannabinoids,” Nature, 365, No. 6441, 61–65 (1993).

    Article  PubMed  CAS  Google Scholar 

  112. T. W. Klein, C. Newton, and H. Friedman, “Cannabinoid receptors and immunity,” Immunol. Today, 19, No. 8, 373–381 (1998).

    Article  PubMed  CAS  Google Scholar 

  113. S. Van, M. Duncan, P. J. Kingsley, et al., “Identification and functional characterization of brainstem cannabinoid CB2 receptors,” Science, 310, No. 5746, 329–332 (2005).

    Article  CAS  Google Scholar 

  114. J. P. Gong, E. S. Onaivi, H. Ishiguro, et al., “Cannabinoid CB2_receptors: immunohistochemical localization in rat brain,” Brain Res., 1071, No. 1, 10–23 (2006).

    Article  PubMed  CAS  Google Scholar 

  115. N. Hajos, C. Ledent, and T. F. Freund, “Novel cannabinoid-sensitive receptor mediates inhibition of glutamatergic synaptic transmission in the hippocampus,” Neuroscience, 106, No. 1, 1–4 (2001).

    Article  PubMed  CAS  Google Scholar 

  116. I. Llano, N. Leresche, and A. Marty, “Calcium entry increases the sensitivity of cerebellar Purkinje cells to applied GABA and decreases inhibitory synaptic currents,” Neuron, 6, No. 4, 565–574 (1991).

    Article  PubMed  CAS  Google Scholar 

  117. A. C. Kreitzer and W. G. Regehr, “Cerebellar depolarization-induced suppression of inhibition is mediated by endogenous cannabinoids,” J. Neurosci., 21, No. 20, RC174 (2001).

    PubMed  CAS  Google Scholar 

  118. T. Ohno-Shosaku, T. Maejima, and M. Kano, “Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals,” Neuron, 29, No. 3, 729–738 (2001).

    Article  PubMed  CAS  Google Scholar 

  119. R. I. Wilson and R. A. Nicoll, “Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses,” Nature, 410, No. 6828, 588–592 (2001).

    Article  PubMed  CAS  Google Scholar 

  120. M. A. Diana, C. Levenes, K. Mackie, and A. Marty, “Short-term retrograde inhibition of GABAergic synaptic currents in rat Purkinje cells is mediated by endogenous cannabinoids,” J. Neurosci., 22, No. 1, 200–208 (2002).

    PubMed  CAS  Google Scholar 

  121. M. Mukhtarov, D. Ragozzino, and P. Bregestovski, “Dual Ca2+ modulation of glycinergic synaptic currents in rodent hypoglossal motoneurons,” J. Physiol., 569, Part 3, 817–831 (2005).

    Article  PubMed  CAS  Google Scholar 

  122. D. Ragozzino and F. Eusebi, “Inhibition of GABA and glycine responses by glutamate in rat hippocampal neurons,” Brain Res., 628, Nos. 1/2, 115–120 (1993).

    Article  PubMed  CAS  Google Scholar 

  123. T. L. Xu, J. S. Li, Y. H. Jin, and N. Akaike, “Modulation of the glycine response by Capermeable AMPA receptors in rat spinal neurones,” J. Physiol., 514, Part 3, 701–711 (1999).

    Article  PubMed  CAS  Google Scholar 

  124. S. Fucile, D. De Saint Jan, L. P. De Carvalho, and P. Bregestovski, “Fast potentiation of glycine receptor channels of intracellular calcium in neurons and transfected cells,” Neuron, 28, No. 2, 571–583 (2000).

    Article  PubMed  CAS  Google Scholar 

  125. Y. Gu and L. Y. Huang, “Cross-modulation of glycine-activated Cl channels by protein kinase C and cAMP-dependent protein kinase in the rat,” J. Physiol., 506, Part 2, 331–339 (1998).

    Article  PubMed  CAS  Google Scholar 

  126. H. G. Breitinger and C. M. Becker, “The inhibitory glycine receptor: prospects for a therapeutic orphan?” Curr. Pharm. Des., 4, No. 4, 315–334 (1998).

    PubMed  CAS  Google Scholar 

  127. R. A. Wang and M. Randic, “Alpha-subunit of CaM-KII increases glycine currents in acutely isolated rat spinal neurons,” J. Neurophysiol., 75, No. 6, 2651–2653 (1996).

    PubMed  CAS  Google Scholar 

  128. L. Zhu, K. Krnjevic, Z. Jiang, et al., “Ethanol suppresses fast potentiation of glycine currents by glutamate,” J. Pharmacol. Exp. Ther., 302, No. 3, 1193–1200 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bregestovski.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 338–349, July–October, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bregestovski, P., Mukhtarov, M. Synaptic function and modulation of glycine receptor channels in the hypoglossal nucleus. Neurophysiology 39, 294–304 (2007). https://doi.org/10.1007/s11062-007-0040-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-007-0040-7

Keywords

Navigation