Skip to main content

Advertisement

Log in

Non-neuronal nicotinic acetylcholine receptors: Cholinergic regulation of the immune processes

  • Published:
Neurophysiology Aims and scope

Abstract

Nicotinic acetylcholine receptors (nAChRs) were initially discovered and studied as mediators of fast synaptic transmission in neuromuscular junctions and autonomic ganglia. Later on, they were found in the brain and in many nonexcitable tissues where they regulate vital cellular functions and the activity of other receptors. Primary immune organs, the bone marrow and thymus, are innervated with cholinergic nerves, which mediate the control of lymphopoiesis provided by the autonomic nervous system. In addition, lymphocytes are able to produce endogenous acetylcholine that can regulate the immune processes in an auto/paracrine way. Correspondingly, both T and B lymphocytes express functional nAChRs involved in the regulation of development and activation of these cells. This review describes the structure and roles of nAChRs in the immune system with regard to its potential regulation by the autonomic nervous system, as well as by self sources of endogenous agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lindstrom, “Neuronal nicotinic acetylcholine receptors,” in: Ion Channels, Vol. 4, T. Narahashi (ed.), Plenum Press, New York (1996), pp. 377–449.

    Google Scholar 

  2. V. I. Skok, “Nicotinic acetylcholine receptors in autonomic ganglia,” Autonomic Neurosci. Basic Clin., 97, 1–11 (2002).

    Article  CAS  Google Scholar 

  3. D. Paterson and A. Nordberg, “Neuronal nicotinic receptors in the human brain,” Prog. Neurobiol., 61, 75–111 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. J. Arrendolo, V. T. Nguen, A. I. Chernyavsky, et al., “Functional role of α7 nicotinic receptors in physiological control of cutaneous homeostasis,” Life Sci., 72, 2063–2067 (2003).

    Article  CAS  Google Scholar 

  5. B. M. Conti-Fine, D. Navaneetham, S. Lei, and A. D. J. Maus, “Neuronal nicotinic receptors in non-neuronal cells: new mediators of tobacco toxicity?” Eur. J. Pharmacol., 393, 279–294 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. A. Cormier, Y. Paas, R. Zini, et al., “Long-term exposure to nicotine modulates the level and activity of acetylcholine receptors in white blood cells of smokers and model mice,” Mol. Pharmacol., 66, 1–7 (2004).

    Article  CAS  Google Scholar 

  7. K. Kawashima and T. Fujii, “The lymphocytic cholinergic system and its biological function,” Life Sci., 72, 2101–2109 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. H. Wang, M. Yu, C. A. Amella, et al., “Nicotinic receptor α7 subunit is an essential regulator of inflammation,” Nature, 421, 384–388 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. P. Bennekou, “The voltage-gated non-selective cation channel from human red cells is sensitive to acetylcholine,” Biochim. Biophys. Acta, 1147, 165–167 (1993).

    Article  PubMed  CAS  Google Scholar 

  10. I. K. Wessler, C. J. Kirkpatrick, and K. Racke, “The cholinergic ‘pitfall’: acetylcholine, a universal cell molecule in biological systems, including humans,” Clin. Exp. Pharm. Physiol., 26, 198–205 (1999).

    Article  CAS  Google Scholar 

  11. K. Bamel, S. C. Gupta, and R. Gupta, “Acetylcholine causes rooting in leaf explants of in vitro raised tomato (Lycopersicon esculentum Miller) seedlings,” Life Sci., 80, Nos. 24/25, 2393–2396 (2007).

    Article  PubMed  CAS  Google Scholar 

  12. N. Bocquet, L. Prado de Carvalo, J. Cartaud, et al., “A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family,” Nature, 445, 116–119 (2007).

    Article  PubMed  CAS  Google Scholar 

  13. T. Strom, A. Sytkowski, C. Carpenter, and J. Merrill, “Cholinergic augmentation of lymphocyte-mediated cytotoxicity. A study of the cholinergic receptor of cytotoxic T lymphocytes,” Proc. Natl. Acad. Sci. USA, 74, 1330–1333 (1974).

    Article  Google Scholar 

  14. D. Richman and B. Arnason, “Nicotinic acetylcholine receptor: evidence for a functionally distinct receptor on human lymphocytes,” Proc. Natl. Acad. Sci. USA, 76, 4632–4635 (1979).

    Article  PubMed  CAS  Google Scholar 

  15. E. Hellstrom-Lindhal and A. Nordberg, “Muscarinic receptor subtypes in subpopulations of human blood mononuclear cells as analyzed by RT-PCR technique,” J. Neuroimmunol., 68, 139–144 (1996).

    Article  Google Scholar 

  16. C. Hiemke, M. Stolp, S. Reuss, et al., “Expression of alpha subunit genes of nicotinic acetylcholine receptors in human lymphocytes,” Neurosci. Lett., 214, 171–174 (1996).

    Article  PubMed  CAS  Google Scholar 

  17. K. Z. Sato, T. Fujii, Y. Watanabe, et al., “Diversity of mRNA expression for muscarinic acetylcholine receptor subtypes and neuronal nicotinic acetylcholine receptor subunits in human mononuclear leukocytes and leukemic cell lines,” Neurosci. Lett., 266, 17–20 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. S. Toyabe, T. Iiai, M. Fukuda, et al., “Identification of nicotinic acetylcholine receptors on lymphocytes in the periphery as well as thymus in mice,” Immunology, 92, 201–205 (1997).

    Article  PubMed  CAS  Google Scholar 

  19. J. Lindstrom, “Autoimmune diseases involving nicotinic receptors,” J. Neurobiol., 53, No. 4, 656–665 (2002).

    Article  PubMed  CAS  Google Scholar 

  20. W. K. Engel, J. L. Trotter, D. E. McFarlin, and C. L. McIntosh, “Thymic epithelial cells contain acetylcholine receptor,” Lancet, 1, 1310–1311 (1977).

    Article  PubMed  CAS  Google Scholar 

  21. T. Kirchner, S. Tzartos, F. Hoppe, et al., “Acetylcholine receptor-related antigenic determinants in tumor-free thymuses and thymic epithelial tumors,” Am. J. Pathol., 130, 268–274 (1986).

    Google Scholar 

  22. S. Kawanami, H. Kamei, J. Otta, et al., “Acetylcholine receptor-like protein from human thymoma associated with myasthenia gravis,” J. Neurol., 234, 207–211 (1987).

    Article  PubMed  CAS  Google Scholar 

  23. K. I. Geuder, A. Marx, V. Witzmann, et al., “Pathogenic significance of fetal-type acetylcholine receptors on thymic myoid cells in myasthenia gravis,” Dev. Immunol., 2, 69–75 (1992).

    PubMed  CAS  Google Scholar 

  24. A. Wakkach, T. Guyon, C. Bruand, et al., “Expression of acetylcholine receptor genes in human thymic epithelial cells-implications for myasthenia gravis,” J. Immunol., 157, 3752–3760 (1996).

    PubMed  CAS  Google Scholar 

  25. D. Navaneetham, A. S. Penn, J. F. Howard, and B. M. Conti-Fine, “Human thymuses express incomplete sets of muscle acetylcholine receptor subunit transcripts that seldom include the δ subunit,” Muscle Nerve, 24, 203–210 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. M. Mihovilovic and A. Roses, “Expression of α3, α5 and β4 neuronal acetylcholine receptor subunit transcripts in normal and myasthenia gravis thymus. Identification of thymocytes expressing the α3 transcripts,” J. Immunol., 151, 6517–6524 (1993).

    PubMed  CAS  Google Scholar 

  27. D. Navaneetham, A. Penn, J. Jr. Howard, and B. Conti-Fine, “Expression of the α7 subunit of the nicotinic acetylcholine receptor in normal and myasthenic human thymuses,” Cell. Mol. Biol., 43, 433–442 (1997).

    PubMed  CAS  Google Scholar 

  28. W. Maslinski, H. Laskowska-Bozek, and J. Ryzewski, “Nicotinic receptors of rat lymphocytes during adjuvant polyarthritis,” J. Neurosci. Res., 31, 336–340 (1992).

    Article  PubMed  CAS  Google Scholar 

  29. F. Lebargy, K. Benhammou, D. Morin, et al., “Tobacco smoking induces expression of very high-affinity nicotine-binding sites on blood polymorphonuclear cells,” Am. J. Respir. Crit. Care Med., 153, 1056–1063 (1996).

    PubMed  CAS  Google Scholar 

  30. K. Benhammou, M. Lee, M. Strook, et al., “[3H]-Nicotine binding in peripheral blood cells of smokers is correlated with the number of cigarettes smoked per day,” Neuropharmacology, 39, 2818–2829 (2000).

    Article  PubMed  CAS  Google Scholar 

  31. H. Laskowska-Bozek, U. Bany, T. Burakowski, et al., “Effect of cholinergic stimulation on free intracellular Ca2+ concentration in human lymphocytes,” Neuroimmunomodulation, 3, 247–253 (1996).

    PubMed  CAS  Google Scholar 

  32. R. Kalra, S. P. Singh, S. M. Savage, et al., “Effects of cigarette smoke on immune response: chronic exposure to cigarette smoke impairs antigen-mediated signaling in T cells and depletes IP3-sensitive Ca2+ stores,” J. Pharmacol. Exp. Ther., 293, 166–171 (2000).

    PubMed  CAS  Google Scholar 

  33. H. Peng, R. L. Ferris, T. Matthews, et al., “Characterization of the human nicotinic acetylcholine receptor subunit alpha (alpha) 9 (CHRNA9) and alpha (alpha) 10 (CHRNA10) in lymphocytes,” Life Sci., 76, No. 3, 263–280 (2004).

    Article  PubMed  CAS  Google Scholar 

  34. M. V. Skok, E. N. Kalashnik, L. N. Koval, et al., “Functional nicotinic acetylcholine receptors are expressed in B lymphocyte-derived cell lines,” Mol. Pharmacol., 64, 885–889 (2003).

    Article  PubMed  CAS  Google Scholar 

  35. M. V. Skok, R. Grailhe, and J.-P. Changeux, “Nicotinic receptors regulate B lymphocyte activation and immune response,” Eur. J. Pharmacol., 517, 246–251 (2005).

    Article  PubMed  CAS  Google Scholar 

  36. M. V. Skok, R. Grailhe, F. Agenes, and J.-P. Changeux, “The role of nicotinic receptors in B-lymphocyte development and activation,” Life Sci., 80, 2334–2336 (2007).

    Article  PubMed  CAS  Google Scholar 

  37. M. V. Skok, R. Grailhe, F. Agenes, and J.-P. Changeux, “The role of nicotinic acetylcholine receptors in lymphocyte development,” J. Neuroimmunol., 171, 86–98 (2006).

    Article  PubMed  CAS  Google Scholar 

  38. P. G. Holt and D. Keast, “Environmentally induced changes in immunological function: acute and chronic effects of inhalation of tobacco smoke and other atmospheric contaminants in man and experimental animals,” Bacteriol. Rev., 41, 205–216 (1977).

    PubMed  CAS  Google Scholar 

  39. J. S. MacKenzie, I. H. MacKenzie, and P. G. Holt, “The effect of cigarette smoking on susceptibility to epidemic influenza and on serological responses to live attenuated and killed subunit influenza vaccines,” J. Hyg. (Lond.), 77, 409–417 (1976).

    CAS  Google Scholar 

  40. S. N. Goud, A. M. Kaplan, and B. Subbarao, “Effects of cigarette smoke on the antibody response to thymic independent antigens from different lymphoid tissues of mice,” Arch. Toxicol., 66, 164–169 (1992).

    Article  PubMed  CAS  Google Scholar 

  41. M. L. Sopori, S. Cherian, R. Chilukuri, and G. M. Shopp, “Cigarette smoke causes inhibition of the immune response to intratracheally administered antigens,” Toxicol. Appl. Pharmacol., 97, 489–499 (1989).

    Article  PubMed  CAS  Google Scholar 

  42. S. M. Savage, L. A. Donaldson, S. Cherian, et al., “Effects of cigarette smoke on the immune response. II. Chronic exposure to cigarette smoke inhibits surface immunoglobulin-mediated responses in B cells,” Toxicol. Appl. Pharmacol., 111, 523–529 (1991).

    Article  PubMed  CAS  Google Scholar 

  43. Y. Geng, S. M. Savage, L. J. Johnson, et al., “Effects of nicotine on the immune response. I. Chronic exposure to nicotine impairs antigen receptor-mediated signal transduction in lymphocytes,” Toxicol. Appl. Pharmacol., 135, 268–278 (1995).

    Article  PubMed  CAS  Google Scholar 

  44. A. A. Frazer-Abel, S. Baksh, S. P. Fosmire, et al., “Nicotine activates nuclear factor of activated T cells c2 (NFATc2) and prevents cell cycle entry in T cells,” J. Pharmacol. Exp. Ther., 311, No. 2, 58–69 (2004).

    Article  CAS  Google Scholar 

  45. Y. Geng, S. M. Savage, S. Razani-Boroujerdi, and M. L. Sopori, “Effects of nicotine on the immune response. II. Chronic nicotine treatment induces T cell anergy,” J. Immunol., 156, 2384–2390 (1996).

    PubMed  CAS  Google Scholar 

  46. S. P. Singh, R. Kalra, P. Puttfarcken, et al., “Acute and chronic nicotine exposures modulate the immune system through different pathways,” Toxicol. Appl. Pharmacol., 164, 65–72 (2000).

    Article  PubMed  CAS  Google Scholar 

  47. P. Andersen, D. F. Pedersen, B. Bach, and G. J. Bonde, “Serum immunoglobulins in smokers and non-smokers,” Clin. Exp. Immunol., 47, 467–473 (1982).

    PubMed  CAS  Google Scholar 

  48. B. Burrows, M. Halonen, R. A. Barbee, and M. D. Lebowitz, “The relationship of serum immunoglobulin E to cigarette smoking,” Am. Rev. Resp. Dis., 124, 523–525 (1981).

    PubMed  CAS  Google Scholar 

  49. D. A. Hughes, P. L. Haslam, P. J. Townsend, and M. Turner-Warwick, “Numerical and functional alteration in circulatory lymphocytes in cigarette smokers,” Clin. Exp. Immunol., 61, 459–466 (1985).

    PubMed  CAS  Google Scholar 

  50. C. Heeschen, J. J. Jang, M. Weis, et al., “Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis,” Nat. Med., 7, 775–777 (2001).

    Article  CAS  Google Scholar 

  51. I. Rinner, A. Globerson, K. Kawashima, et al., “A possible role for acetylcholine in the dialogue between thymocytes and thymic stroma,” Neuroimmunomodulation, 6, 51–55 (1999).

    Article  PubMed  CAS  Google Scholar 

  52. K. H. Costenbader and E. W. Karlson, “Cigarette smoking and systemic lupus erythematosus: a smoking gun?” Autoimmunity, 38, No. 7, 541–547 (2005).

    Article  PubMed  CAS  Google Scholar 

  53. M. E. Gershwin, C. Selmi, H. J. Worman, et al., “Risk factors and comorbidities in primary biliary cirrhosis: a controlled interview-based study of 1032 patients,” Hepatology, 42, No. 5, 1194–1202 (2005).

    Article  PubMed  Google Scholar 

  54. M. M. Ward, M. H. Weisman, J. C. Davis, Jr., and J. D. Reveille, “Risk factors for functional limitations in patients with long-standing ankylosing spondylitis,” Arthritis Rheumatol., 53, No. 5, 710–717 (2005).

    Article  Google Scholar 

  55. M. M. Loembe, J. Lamoureux, N. Deslauriers, et al., “Lack of CD40-dependent B-cell proliferation in B lymphocytes isolated from patients with persistent polyclonal B-cell lymphocytosis,” Br. J. Haematol., 113, 699–705 (2001).

    Article  PubMed  CAS  Google Scholar 

  56. C. M. Mills, “Smoking and skin disease,” Int. J. Dermatol., 32, 864–865 (1993).

    Article  PubMed  CAS  Google Scholar 

  57. M. L. Sopori, W. Kozak, S. M. Savage, et al., “Effect of nicotine on the immune system: possible regulation of immune responses by central and peripheral mechanisms,” Psychoneuroendocrinology, 23, 189–204 (1998).

    Article  PubMed  CAS  Google Scholar 

  58. G. P. Brown, G. K. Iwamoto, M. M. Monick, and G. W. Hunninghake, “Cigarette smoking decreases interleukin-1 release by human alveolar macrophages,” Am. J. Physiol., 256, C260–C264 (1989).

    PubMed  CAS  Google Scholar 

  59. L. V. Borovikova, S. Ivanova, M. Zhang, et al., “Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin,” Nature, 405, 458–462 (2000).

    Article  PubMed  CAS  Google Scholar 

  60. K. Aoshiba, A. Nagai, and K. Yasui Konno, “Nicotine prolongs neutrophil survival by suppressing apoptosis,” J. Lab. Clin. Med., 127, 186–194 (1996).

    Article  PubMed  CAS  Google Scholar 

  61. N. Serobyan, S. Jagannathan, I. Orlovskaya, et al., “The cholinergic system is involved in regulation of the development of the hematopoietic system,” Life Sci., 80, 2352–2360 (2007).

    Article  PubMed  CAS  Google Scholar 

  62. S. Y. Felten and D. L. Felten, “Innervation of lymphoid tissue,” in: Psychoneuroimmunology, R. Ader, D. L. Felten, and D. Cohen (eds.), Academic Press, San Diego (1991), pp. 21–118.

    Google Scholar 

  63. F. Mignini, V. Strecioni, and F. Amenta, “Autonomic innervation of immune organs and neuroimmune modulation,” Auton. Autacoid. Pharmacol., 23, 1–25 (2003).

    Article  PubMed  CAS  Google Scholar 

  64. V. M. Sanders and A. P. Kohm, “Sympathetic nervous system interaction with the immune system,” Int. Rev. Neurobiol., 52, 17–41 (2002).

    Article  PubMed  CAS  Google Scholar 

  65. Y. Qiu, Y. Peng, and J. Wang, “Immunoregulatory role of neurotransmitters,” Adv. Neuroimmunol., 6, 223–231 (1996).

    Article  PubMed  CAS  Google Scholar 

  66. M. Artico, S. Bosco, C. Cavallotti, et al., “Noradrenergic and cholinergic innervation of the bone marrow,” Int. J. Mol. Med., 10, 77–80 (2002).

    PubMed  CAS  Google Scholar 

  67. U. Singh and J. Fatani, “Thymic lymphopoiesis and cholinergic innervations,” Thymus, 11, 3–13 (1988).

    PubMed  CAS  Google Scholar 

  68. V. N. Chernigovskiy, S. Yu. Shehter, and A. Ya. Yaroshevskiy, Regulation of Hematopoiesis [in Russian], Nauka Publishing House, Leningrad (1967).

    Google Scholar 

  69. A. Antonica, E. Magni, L. Mearini, and N. Paolocci, “Vagal control of lymphocyte release from rat thymus,” J. Auton. Nerv. Sys., 48, 187–197 (1994).

    Article  CAS  Google Scholar 

  70. D. L. Bellinger, D. Lorton, R. W. Hamill, et al., “Acetylcholinesterase staining and choline acetyltransferase activity in the young adult rat spleen: lack of evidence for cholinergic innervations,” Brain, Behav., Immunity, 7, 191–204 (1993).

    Article  CAS  Google Scholar 

  71. K. S. Lips, C. Volk, B. M. Schmit et al., “Polyspecific cation transporters mediate luminal release of acetylcholine from bronchial epithelium,” Am. J. Respir. Cell. Mol. Biol., 33, 79–88 (2005).

    Article  PubMed  CAS  Google Scholar 

  72. T. Schlereth, F. Birklein, K. an Haack, et al., “In vivo release of non-neuronal acetylcholine from the human skin as measured by dermal microdialysis: effect of botulinum toxin,” Br. J. Pharmacol., 147, 183–187 (2006).

    Article  PubMed  CAS  Google Scholar 

  73. M. Yoshida, A. Inadome, Y. Maeda, et al., “Non-neuronal cholinergic system in human bladder urothelium,” Urology, 67, No. 2, 425–430 (2006).

    Article  PubMed  Google Scholar 

  74. I. Rinner, K. Kawashima, and K. Schauenstein, “Rat lymphocytes produce and secrete acetylcholine in dependence of differentiation and activation,” J. Neuroimmunol., 81, 31–37 (1998).

    Article  PubMed  CAS  Google Scholar 

  75. T. Fujii, Y. Takada-Takatori, and K. Kawashima, “Roles played by lymphocyte function-associated antigen-1 in the regulation of lymphocytic cholinergic activity,” Life Sci., 80, Nos. 24/25, 2320–2324 (2007).

    Article  PubMed  CAS  Google Scholar 

  76. Y. Zhou, E. Deneris, and R. E. Zigmond, “Nicotinic acetylcholine receptor subunit proteins alpha7 and beta4 decrease in the superior cervical ganglion after axotomy,” J. Neurobiol., 46, No. 3, 178–192 (2001).

    Article  PubMed  CAS  Google Scholar 

  77. R. S. Broide and F. M. Leslie, “The alpha7 nicotinic acetylcholine receptor in neuronal plasticity,” Mol. Neurobiol., 20, 1–16 (1999).

    Article  PubMed  CAS  Google Scholar 

  78. M. Alkondon, E. F. R. Pereira, W. S. Cortes, et al., “Choline is a selective agonist of α7 nicotinic acetylcholine receptors in the rat brain neurons,” Eur. J. Neurosci., 9, 2734–2742 (1997).

    Article  PubMed  CAS  Google Scholar 

  79. J. Arredondo, A. I. Chernyavsky, R. J. Webber, and S. A. Grando, “Biological effects of SLURP-1 on human keratinocytes,” J. Invest. Dermatol., 125, No. 6, 1236–1241 (2005).

    Article  PubMed  CAS  Google Scholar 

  80. J. Arredondo, A. I. Chernyavsky, D. L. Jolkovsky, et al., “SLURP-2: A novel cholinergic signaling peptide in human mucocutaneous epithelium,” J. Cell. Physiol., 208, No. 1, 238–245 (2006).

    Article  PubMed  CAS  Google Scholar 

  81. Y. Moriwaki, K. Yoshikawa, H. Fukuda, et al., “Immune system expression of SLURP-1 and SLURP-2, two endogenous nicotinic acetylcholine receptor ligands,” Life Sci., 80, Nos. 24/25, 2365–2368 (2007).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Skok.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 307–314, July–October, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skok, M.V. Non-neuronal nicotinic acetylcholine receptors: Cholinergic regulation of the immune processes. Neurophysiology 39, 264–271 (2007). https://doi.org/10.1007/s11062-007-0037-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-007-0037-2

Keywords

Navigation