Skip to main content
Log in

Sucrose-gap technique: Advantages and limitations

  • Published:
Neurophysiology Aims and scope

Abstract

The sucrose-gap technique has been widely used as a convenient tool for recording of the membrane activities from myelinated or unmyelinated nerves and muscle preparations (such as smooth and cardiac muscles). The quantitative measurements of membrane and action potentials in preparations with electrical coupling between their compartments are made much easier by this technique; the recorded potentials are rather similar to those recorded with a microelectrode. Recording of the membrane activities is of great value to experimenters studying the nervous system due to the simplicity and ease of use of this technique and the broad spectrum of sensitivity to agents influencing the electrical activity. This paper is focused on the set-up procedure and operation of the sucrose-gap technique, which provides an inexpensive, practical, and effective method for the investigation of the effects of drugs on the membrane activities of nerves and muscles in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Hille, Ionic Channels of Excitable Membranes, Sinauer Associates, Inc., Sunderland, Mass. (2001).

    Google Scholar 

  2. S. G. Waxman and J. M. Ritchie, “Molecular dissection of the myelinated axon,” Ann. Neurol., 33, 121–136 (1993).

    Article  PubMed  CAS  Google Scholar 

  3. P. Jirounek, E. Chardonnens, and P. C. Brunet, “Afterpotentials in non-myelinated nerve fibers,” J. Neurophysiol., 65, 860–873 (1991).

    PubMed  CAS  Google Scholar 

  4. P. K. Stys and J. D. Kocsis, “Electrophysiological approaches to the study of axons,” in: The Axon: Structure, Function and Pathophysiology, S. G. Waxman, J. D. Kocsis, and P. R. Stys (eds.), Oxford Univ. Press, New York (1995), pp. 328–340.

    Google Scholar 

  5. T. Mert, Y. Gunes, M. Guven, et al., “Comparison of nerve conduction blocks by an opioid and a local anesthetic,” Eur. J. Pharmacol., 439, 77–81 (2002).

    Article  PubMed  CAS  Google Scholar 

  6. J. Sakai, O. Honmou, J. D. Kocsis, and K. Hashi, “The delayed depolarization in rat cutaneous afferent axons is reduced following nerve transection and ligation, but not crush: implications for injury-induced axonal Na channel reorganization,” Muscle Nerve, 21, 1040–1047 (1998).

    Article  PubMed  CAS  Google Scholar 

  7. S. L. Son, K. Wong, and G. Strichartz, “Antagonism by local anesthetics of sodium channel activators in the presence of scorpion toxins: Two mechanisms for competitive inhibition,” Cell Mol. Neurobiol., 24, 565–577 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. R. Shi, T. Asano, C. N. Vining, and A. R. Blight, “Control of membrane sealing in injured mammalian spinal cord axons,” J. Neurophysiol., 84, 1763–1769 (2000).

    PubMed  CAS  Google Scholar 

  9. F. J. Julian, J. W. Moore, and D. E. Goldman, “Membrane potentials of the lobster giant axon obtained by use of the sucrose-gap technique,” J. Gen. Physiol., 45, 1195–1216 (1962).

    Article  PubMed  CAS  Google Scholar 

  10. P. N. Strong, J. T. Smith, and J. T. W. Keana, “A convenient bioassay for detecting nanomolar concentration of lidokaine,” Toxicon, 11, 433–438 (1973).

    Article  PubMed  CAS  Google Scholar 

  11. E. F. Barrett and J. N. Barrett, “Intracellular recording from vertebrate myelinated axons: mechanism of the depolarizing afterpotential,” J. Physiol., 323, 117–144 (1982).

    PubMed  CAS  Google Scholar 

  12. D. L. Eng, T. R. Gordon, J. D. Kocsis, and S. G. Waxman, “Current-clamp analysis of a time-dependent rectification in rat optic nerve,” J. Physiol., 421, 185–202 (1990).

    PubMed  CAS  Google Scholar 

  13. J. D. Kocsis, T. R. Gordon, and S. G. Waxman, “Mammalian optic nerve fibers display two pharmacologically distinct potassium channels,” Brain Res., 383, 357–361 (1986).

    Article  PubMed  CAS  Google Scholar 

  14. F. Erne-Brand, P. Jirounek, J. Drewe, et al., “Mechanism of antinociceptive action of clonidine in nonmyelinated nerve fibers,” Eur. J. Pharmacol., 383, 1–8 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. M. A. Rizzo, J. D. Kocsis, and S. G. Waxman, “Slow Na+ conductance of dorsal root ganglion neurons: intraneuronal homogeneity and inter neuronal heterogeneity,” J. Neurophysiol., 72, 2796–2815 (1994).

    PubMed  CAS  Google Scholar 

  16. C. Dalle, M. Schneider, F. O. Clergue, et al., “Inhibition of the Ih current in isolated peripheral nerve: A novel mode of peripheral antinociception,” Muscle Nerve, 24, 254–261 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. S. Marsh, “An extracellular recording technique for monitoring drug-induced changes in membrane polarization and evoked potential amplitudes from whole nerve bundles and ganglia,” in: FFB4, Electrodes for Stimulation and Bioelectric Potential Recording, Biomesstechnik-Verlag March, Germany (1988), pp. 232–235.

    Google Scholar 

  18. R. Stämpfli, “A new method for measuring membrane potentials with external electrodes,” Experientia, 10, 508–509 (1954).

    Article  PubMed  Google Scholar 

  19. C. G. Oxford and J. P. Pooler, “Selective modification of sodium channel gating in lobster axons by 2,4,6-trinitrophenol. Evidence for two inactivation mechanisms,” J. Gen. Physiol., 66, 765–779 (1975).

    Article  PubMed  CAS  Google Scholar 

  20. L. Leppanen and P. K. Stys, “Ion transport and membrane potential in CNS myelinated axons: I. Normoxic conditions,” J. Neurophysiol., 78, 2086–2094 (1997).

    PubMed  CAS  Google Scholar 

  21. N. Persaud and G. R. Strichartz, “Micromolar lidocaine selectively blocks propagating ectopic impulses at a distance from their site of origin,” Pain, 99, 333–340 (2002).

    Article  PubMed  CAS  Google Scholar 

  22. B. D. Brich, J. D. Kocsis, F. D. Gregorio, et al., “A voltage-and time-dependent rectification in rat spinal root axons,” J. Neurophysiol., 66, 719–728 (1991).

    Google Scholar 

  23. A. H. Tokuno, C. W. Bradberry, B. Everill, et al., “Local anesthetic effects of cocaethylene and isopropylcocaine on rat peripheral nerves,” Brain Res., 996, 159–167 (2004).

    Article  PubMed  CAS  Google Scholar 

  24. M. A. Peasley and R. Shi, “Ischemic insult exacerbates acrolein-induced conduction loss and axonal membrane disruption in guinea pig spinal cord white matter,” J. Neurol. Sci., 216, 23–32 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. A. H. Tokuno, J. D. Kocsis, and S. G. Waxman, “Noninactivating, tetrodotoxin-sensitive Na conductance in peripheral axons,” Muscle Nerve, 28, 212–217 (2003).

    Article  PubMed  CAS  Google Scholar 

  26. R. Hahin and G. R. Strichartz, “Effects of deuterium oxide on the rate and dissociation constants for saxitoxin and tetrodotoxin action,” J. Gen. Physiol., 78, 113–139 (1981).

    Article  PubMed  CAS  Google Scholar 

  27. M. P. Blaustein and D. E. Goldman, “Origin of axon membrane hyperpolarization under sucrose-gap,” Biophys. J., 6, 453–470 (1966).

    CAS  PubMed  Google Scholar 

  28. P. Jirounek and R. W. Straub, “The potential distribution and the short-circuiting factor in the sucrose gap,” Biophys. J., 11, 1–10 (1971).

    PubMed  CAS  Google Scholar 

  29. P. Jirounek, G. J. Jones, C. W. Burckhardt, and R. W. Straub, “The correction factors for sucrose gap measurements and their practical application,” Biophys. J., 33, 107–120 (1981).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mert.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 39, No. 3, pp. 270–274, May–June, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mert, T. Sucrose-gap technique: Advantages and limitations. Neurophysiology 39, 237–241 (2007). https://doi.org/10.1007/s11062-007-0031-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-007-0031-8

Keywords

Navigation