Skip to main content

Antinociceptive effects of low-intensity extrahigh-frequency electromagnetic radiation

Abstract

We studied the effect of low-intensity extrahigh-frequency (EHF) electromagnetic radiation (EMR) on changes of behavior phenomena in rats observed under conditions of experimentally induced tonic somatic, visceral, and acute thermal pain. Preliminary irradiation of the animals with EHF EMR was found to exert clear antinociceptive effects. Decreases in the intensity of pain reactions were observed under conditions of both single and repeated irradiation sessions.

This is a preview of subscription content, access via your institution.

References

  1. L. V. Kalyuzhnyi, Physiological Mechanisms of Regulation of Pain Sensitivity [in Russian], Meditsina. Moscow (1984).

    Google Scholar 

  2. V. A. Mikhailovich and Yu. D. Ignatov, Pain Syndrome [in Russian], Nauka, Leningrad (1990).

    Google Scholar 

  3. E. O. Bragin, Neurochemical Mechanisms of Regulation of Pain Sensitivity [in Russian], Publ. House of the Univ. of Friendship between Nations, Moscow (1991).

    Google Scholar 

  4. A. M. Vein and M. Ya. Avrutskii, Pain and Anesthesia [in Russian], Meditsina. Moscow (1997).

    Google Scholar 

  5. Yu. P. Limanskii, Z. A. Tamarova, S. O. Gulyar, and E. G. Bidkov, “Analgesic effect of polarized light on acupuncture points,” Fiziol. Zh., 46, No. 6, 105–111 (2000).

    Google Scholar 

  6. E. N. Chuyan, Neuroimmunoendocrine Mechanisms of Adaptation to the Action of Low-Intensity Extrahigh-Frequency Electromagnetic Radiation [in Ukrainian], Doctoral Thesis, Biol. Sci., Kyiv (2004).

    Google Scholar 

  7. A. E. Bessonov and M. V. Balakirev, “A technique for millimeter-wave therapy,” Vestn. Nov. Med. Technol., 5, No. 2, 105–108 (1998).

    Google Scholar 

  8. M. A. Ronkin, O. B. Betskii, I. M. Maksimenko, et al., “On some capabilities of EHF radiation in the treatment of neurologic patients,” in: Proc. of the International Symposium “Millimeter Waves of Non-Thermal Intensity in Medicine” [in Russian], Moscow (1991), pp. 263–266.

  9. T. V. Golovacheva, “EHF therapy in complex treatment of cardiovascular diseases,” in: Proc. of the 10th Russian Symposium with Internat. Participation “Millimeter Waves in Biology and Medicine” [in Russian], Moscow (1995), pp. 29–31.

  10. N. N. Naumcheva, “Use of electromagnetic waves of millimeter range in cardiological practice,” Millimeter Waves Biol. Med., No. 6, 26–29 (1995).

  11. Yu. L. Arzumanov, O. V. Betskii, N. D. Devyatkov, and N. N. Lebedeva, “Use of millimeter waves in clinical medicine (novel achievements),” in: Proc. of the II Russian Symposium with Internat. Participation “Millimeter Waves in Biology and Medicine” [in Russian], Moscow (1997), pp. 9–12.

  12. Yu. F. Kamenev, “Use of electromagnetic radiation in traumatology and orthopedics,” Millimeter Waves Biol. Med., No. 2 (14), 20–25 (1999).

  13. V. A. Dremuchev, V. A. Golunov, and V. A. Korotkov, “Use of narrow-waveband noise radiation of millimeter range and express diagnostics, by Foll, in the treatment of chronic prostatitis,” in: Proc. of the II Russian Symposium with Internat. Participation “Millimeter Waves in Biology and Medicine” [in Russian], Moscow (1997), pp. 57–61.

  14. E. N. Chuyan, Effects of Millimeter Waves of Non-Thermal Intensity on the Development of Hypokinetic Stress in Rats with Different Individual Peculiarities [in Russian], Cand. Thesis, Biol. Sci., Simferopol’ (1992).

    Google Scholar 

  15. L. Santana Vega, Role of Individual Specificities of Motor Activity in the Development of Hypokinetic Stress in Rats [in Russian], Cand. Thesis, Biol. Sci., Simferopol’ (1991).

    Google Scholar 

  16. D. Dubuisson and S. G. Dennis, “The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brainstem stimulation in rats and cats,” Pain, C4, 161–164 (1997).

    Google Scholar 

  17. R. Koster, M. Anderson, and E. J. De Beer, “Acetic acid for analgesic screening,” Fed. Proc., 18, 412–413 (1959).

    Google Scholar 

  18. J. O’Callaghan and S. G. Holtzman, “Quantification of the analgesic activity of narcotic antagonists by a modified hot-plate procedure,” Pharmacol. Exp. Ther., 194, 497–505 (1979).

    Google Scholar 

  19. O. V. Betskii and N. N. Lebedeva, “Modern concepts on the mechanisms of action of low-intensity millimeter waves on biological objects,” Millimeter Waves Biol. Med., No. 3 (24), 5–19 (2001).

    Google Scholar 

  20. A. A. Panin, O. V. Petrov, F. F. Kakurin, et al., “Study of an analgesic component of premedication using the technique of caloric sensometry,” Anesteziol. Reanimatol., No. 1, 18–20 (1983).

    Google Scholar 

  21. N. A. Osipova, Yu. B. Abramova, L. V. Rybakova, et al., “Sensometry in the estimation of premedication,” Anesteziol. Reanimatol., No. 1, 54–59 (1984).

    Google Scholar 

  22. D. A. Golombek, E. Escolar, L. J. Burin, et al., “Time-dependent melatonin analgesia in mice: inhibition by opiate or benzodiazepine antagonist,” Eur. J. Pharmacol., 194, No. 1, 25–30 (1991).

    PubMed  Article  CAS  Google Scholar 

  23. V. M. Zhenilo, I. A. Aznauryan, and Yu. B. Abramov, “Modern concepts on the functioning of nociceptive and antinociceptive systems of the organism,” Vestn. Intensiv. Ter., No. 2, 30–35 (2000).

  24. N. N. Lebedeva and T. I. Kotrovskaya, “Experimental/clinical studies of biological effects of millimeter waves,” Millimeter Waves Biol. Med., No. 3 (15), 3–15 (1999).

  25. A. V. Sidorenko and V. V. Tsaryuk, “Effects of microwaves on the interhemisphere asymmetry of the brain in anesthetized rats,” Millimeter Waves Biol. Med., No. 3 (24), 9–12 (2001).

  26. A. M. Vasilenko, O. G. Yanovskii, O. V. Koptelev, et al., “Correlation of the pain sensitivity and humoral immune response in mice at thermostimulation,” Byull. Éksp. Biol. Med., No. 4, 405–408 (1995).

    Google Scholar 

  27. N. D. Devyatkov, M. B. Golant, and O. V. Betskii, Millimeter Waves and Their Role in the Living Processes [in Russian], Radio Svyaz’, Moscow (1991).

    Google Scholar 

  28. V. D. Avelev, G. N. Akoyev, N. I. Chalisova, and M. I. Lyudyns, “Stimulating effect of electromagnetic waves of millimeter range and non-thermal power on organotypic cultures of spinal ganglia of chick embryos,” in: Proc. of the Internat. Symposium “Millimeter Waves of Non-Thermal Intensity in Medicine” [in Russian], Moscow (1991), pp. 381–386.

  29. A. V. Berus, A. E. Stolbikov, O. V. Shmal’, and P. Ya. Gaponyuk, “Peculiarities of changes in the parameters of the EEG spectrum in the course of EHF therapy in hypertensive patients with different types of hemodynamics,” in: Proc. of the Internat. Symposium “Millimeter Waves of Non-Thermal Intensity in Medicine” [in Russian], Moscow (1991), pp. 114–119.

  30. B. V. Kirova, “Hypothetical mechanisms of EHF-puncture analgesia,” in: Proc. of the 12th Russian Symposium with Internat. Participation “Millimeter Waves in Biology and Medicine” [in Russian], Moscow (2000), pp. 57–58.

  31. H. S. Hain, J. K. Belknap, and J. S. Mogil, “Parmacogenetic evidence for the involvement of 5-hydroxytryptamine (serotonin)-1B receptors in the mediation of morphine antinociceptive sensivity,” J. Pharmacol. Exp. Ther., 291, No. 2, 444–449 (1999).

    PubMed  CAS  Google Scholar 

  32. E. V. Gura, E. V. Bagatskaya, and Yu. P. Limanskii, “Involvement of the serotonergic system in analgesia induced by the influence of low-intensity microwaves on an antipain acupuncture point,” Neurophysiology, 34, No. 4, 292–296 (2002).

    Article  Google Scholar 

  33. O. Gordienko, A. Radzievsky, A. Cowan, et al., “Delta 1 and kappa-opioid receptor subtypes involved in the hypoalgesic effect of millimeter wave treatment,” in: Abstract Twenty-Fourth Annual Meeting in Cooperation with the European Bioelectromagnetics Association, Canada, Ottawa (2002), p. 27.

  34. E. N. Chuyan and M. M. Makhonina, “Role of opioid peptides in changes in the functional activity of blood neutrophils and lymphocytes of rats upon isolated influences of low-intensity EHF EMR and those combined with hypokinesia,” Uch. Zap. Vernadskii Tavrichesk. Nats. Univ., Ser. Biol., Chem., 18(57), No. 2, 169–177 (2005).

    Google Scholar 

  35. A. S. Shtemberg, M. G. Uzbekov, and S. N. Shikhov, “Some neurotropic effects of low-intensity electromagnetic waves in rats with different typological peculiarities of higher nervous activity,” Zh. Vissh. Nerv. Deyat., 50, No. 5, 867–877 (2000).

    CAS  Google Scholar 

  36. Yu. M. Kulikovich and Z. A. Tamarova, “Role of opiate receptors in analgesia evoked by the action of low-intensity millimeter waves on an acupuncture point,” Med. Perspekt., 4, No. 3, 9–14 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Chuyan.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 38, No. 4, pp. 331–341, July–August, 2006.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chuyan, E.N., Dzheldubayeva, É.R. Antinociceptive effects of low-intensity extrahigh-frequency electromagnetic radiation. Neurophysiology 38, 277–285 (2006). https://doi.org/10.1007/s11062-006-0057-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-006-0057-3

Keywords

  • extrahigh-frequency electromagnetic radiation
  • behavioral reactions
  • tonic somatic pain
  • visceral pain
  • acute thermal pain