Skip to main content
Log in

Effect of a non-hydrolyzable analog of diadenosine polyphosphates on NMDA-mediated currents in isolated pyramidal neurons of the rat hippocampus

  • Published:
Neurophysiology Aims and scope

Abstract

Using a patch-clamp technique under voltage clamp conditions, we studied the effect of a non-hydrolyzable analog of diadenosine polyphosphates (AppCH2ppAs) on chemoactivated transmembrane currents through NMDA channels (NMDA currents) in isolated pyramidal neurons of the rat hippocampal CA3 zone. In 55.7% of the cases, AppCH2ppAs caused an increase in the peak amplitude of the currents induced by application of aspartate. In 39.5% of the cases, the agent exerted no effect, while in 4.8% these currents were suppressed. When studying the pharmacological effect of an increase in the amplitude of NMDA currents, we found that potentiation of these currents is mediated, first of all, by activation of P2 purinoceptors and is prevented by a blocker of tyrosine kinases, genistein. Receptor-channel NMDA complexes, due to their ability to be blocked by divalent cations, also contribute to the above effect of AppCH2ppA. Based on the data obtained, we conclude that AppCH2ppA influences NMDA receptors via activation of the P2 receptors and subsequent activation of tyrosine kinases; this leads to the modification of receptor-channel NMDA complexes and to the removal of their tonic blocking by zinc ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Klishin, N. Lozovaya, and O. Krishtal, “A1 adenosine receptors differentially regulate the N-methyl-D-aspartate and non-N-methyl-D-aspartate receptor-mediated components of hippocampal excitatory postsynaptic current in a Ca2+/Mg2+-dependent manner,” Neuroscience, 65, No. 4, 947–953 (1995).

    Article  PubMed  CAS  Google Scholar 

  2. J. Pintor, M. Diaz-Hernandez, J. Gualix, et al., “Diadenosine polyphosphate receptors from rat and guinea-pig brain to human nervous system,” Pharmacol. Ther., 87, Nos. 2/3, 103–115 (2000).

    Article  PubMed  CAS  Google Scholar 

  3. F. Rodriguez-Pascual, R. Cortes, M. Torres, et al., “Distribution of [3H]diadenosine tetraphosphate binding sites in rat brain,” Neuroscience, 77, No. 1, 247–255 (1997).

    Article  PubMed  CAS  Google Scholar 

  4. A. G. McLennan, “Dinucleoside polyphosphates — friend or foe?” Pharmacol. Ther., 87, Nos. 2/3, 73–89 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. M. Wright, J. A. Tanner, and A. D. Miller, “Quantitative single-step purification of dinucleoside polyphosphates,” Anal. Biochem., 316, No. 1, 135–138 (2003).

    Article  PubMed  CAS  Google Scholar 

  6. S. Melnik, M. Wright, J. A. Tanner, et al., “Modulation of synaptic activity in CA3-CA1 by diadenosine polyphosphate analogue,” Neuroscience: Theor. Pract. Aspects, 1, No. 1, 73–74 (2006).

    Google Scholar 

  7. J. A. Tanner, A. Abowath, and A. D. Miller, “Isothermal titration calorimetry reveals a zinc ion as an atomic switch in the diadenosine polyphosphates,” J. Biol. Chem., 277, No. 5, 3073–3078 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. M. P. Cuajungco and G. J. Lees, “Zinc metabolism in the brain: relevance to human neurodegenerative disorders,” Neurobiol. Dis., 4, Nos. 3/4, 137–169 (1997).

    Article  PubMed  CAS  Google Scholar 

  9. F. Zheng, M. B. Gingrich, S. F. Traynelis, et al., “Tyrosine kinase potentiates NMDA receptor currents by reducing tonic zinc inhibition,” Nat. Neurosci., 1, No. 3, 185–191 (1998).

    Article  PubMed  CAS  Google Scholar 

  10. T. Akiyama, J. Ishida, S. Nakagawa, et al., “Genistein, a specific inhibitor of tyrosine-specific protein kinases,” J. Biol. Chem., 262, No. 12, 5592–5595 (1987).

    PubMed  CAS  Google Scholar 

  11. M. Ahlander, I. Misane, P. A. Schott, et al., “A behavioral analysis of the spatial learning deficit induced by the NMDA receptor antagonist MK-801 (dizocilpine) in the rat,” Neuropsychopharmacology, 21, No. 3, 414–426 (1999).

    Article  PubMed  CAS  Google Scholar 

  12. J. A. Gorter and J. P. de Bruin, “Chronic neonatal MK-801 treatment results in an impairment of spatial learning in the adult rat,” Brain Res., 580, Nos. 1/2, 12–17 (1992).

    Article  PubMed  CAS  Google Scholar 

  13. I. Q. Whishaw and R. N. Auer, “Immediate and long-lasting effects of MK-801 on motor activity, spatial navigation in a swimming pool and EEG in the rat,” Psychopharmacology, 98, No. 4, 500–507 (1989).

    Article  PubMed  CAS  Google Scholar 

  14. C. G. Parsons, W. Danysz, and G. Quack, “Glutamate in CNS disorders as a target for drug development: an update,” Drug News Perspect., 11, No. 9, 523–569 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. G. Burnstock, T. Cocks, L. Kasakov, et al., “Direct evidence for ATP release from non-adrenergic, non-cholinergic (’purinergic’) nerves in the guinea-pig taenia coli and bladder,” Eur. J. Pharmacol., 49, No. 2, 145–149 (1978).

    Article  PubMed  CAS  Google Scholar 

  16. G. Collo, R. A. North, E. Kawashima, et al., “Cloning of P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels,” J. Neurosci., 16, No. 8, 2495–2507 (1996).

    PubMed  CAS  Google Scholar 

  17. B. S. Khakh, W. R. Proctor, T. V. Dunwiddie, et al., “Allosteric control of gating and kinetics at P2X(4) receptor channels,” J. Neurosci., 19, No. 17, 7289–7299 (1999).

    PubMed  CAS  Google Scholar 

  18. X. Bo, Y. Zhang, M. Nassar, et al., “A P2X purinoceptor cDNA conferring a novel pharmacological profile,” FEBS Lett., 375, Nos. 1/2, 129–133 (1995).

    Article  PubMed  CAS  Google Scholar 

  19. Y. D. Bogdanov, S. S. Wildman, M. P. Clements, et al., “Molecular cloning and characterization of rat P2Y4 nucleotide receptor,” Br. J. Pharmacol., 124, No. 3, 428–430 (1998).

    Article  PubMed  CAS  Google Scholar 

  20. D. Communi, B. Robaye, and J. M. Boeynaems, “Pharmacological characterization of the human P2Y11 receptor,” Br. J. Pharmacol., 128, No. 6, 1199–1206 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. M. Glanzel, R. Bultmann, K. Starke, et al., “Constitutional isomers of Reactive Blue 2-selective P2Y-receptor antagonists?” Eur. J. Med. Chem., 38, No. 3, 303–312 (2003).

    Article  PubMed  CAS  Google Scholar 

  22. J. B. Schachter, Q. Li, J. L. Boyer, et al., “Second messenger cascade specificity and pharmacological selectivity of the human P2Y1-purinoceptor,” Br. J. Pharmacol., 118, No. 1, 167–173 (1996).

    PubMed  CAS  Google Scholar 

  23. J. Simon, T. E. Webb, B. F. King, et al., “Characterization of a recombinant P2Y purinoceptor, ” Eur. J. Pharmacol., 291, No. 3, 281–289 (1995).

    Article  PubMed  CAS  Google Scholar 

  24. F. M. Haug, “Electron microscopical localization of the zinc in hippocampal mossy fiber synapses by a modified sulfide silver procedure,” Histochemie, 8, No. 4, 355–368 (1967).

    Article  PubMed  CAS  Google Scholar 

  25. S. Y. Assaf and S. H. Chung, “Release of endogenous Zn2+ from brain tissue during activity, ” Nature, 308, No. 5961, 734–736 (1984).

    Article  PubMed  CAS  Google Scholar 

  26. M. L. Mayer and G. L. Westbrook, “Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurons,” J. Physiol., 394, 501–527 (1987).

    PubMed  CAS  Google Scholar 

  27. S. Laurberg and J. Zimmer, “Lesion-induced sprouting of hippocampal mossy fiber collaterals to the fascia dentata in developing and adult rats,” J. Comp. Neurol., 200, No. 3, 433–459 (1981).

    Article  PubMed  CAS  Google Scholar 

  28. E. H. Buhl, T. S. Otis, and I. Mody, “Zinc-induced collapse of augmented inhibition by GABA in a temporal lobe epilepsy model,” Science, 271, No. 5247, 369–373 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Tsintsadze.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 38, No. 3, pp. 205–210, May–June, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsintsadze, V.P., Fedorenko, A.L., Tsintsadze, T.S. et al. Effect of a non-hydrolyzable analog of diadenosine polyphosphates on NMDA-mediated currents in isolated pyramidal neurons of the rat hippocampus. Neurophysiology 38, 169–174 (2006). https://doi.org/10.1007/s11062-006-0041-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-006-0041-y

Keywords

Navigation