Skip to main content
Log in

Antioxidant-caused changes in the permeability of proton-gated ion channels for sodium and calcium

  • Published:
Neurophysiology Aims and scope

Abstract

Using a patch-clamp technique in the whole-cell configuration, we studied the effect of an exogenous antioxidant, dithiothreitol (DTT), on transmembrane currents in isolated cells obtained from the rat spinal ganglia. We demonstrated that this antioxidant (DTT) is capable of modulating the proton-gated current. In most neurons, proton-gated currents increased in the presence of the antioxidant. Since proton-gated receptor-channel complexes of sensory neurons are involved in different processes of signalling and transmission of sensory information in the peripheral nervous system, we hypothesize that the influences mediated by alterations of the concentrations of antioxidants participate in the formation of the state of algesia under normal physiological conditions and of that of hyperalgesia in pathological states. In addition, oxidative stress, which causes a shift in the balance of concentrations of antioxidants, accompanies numerous abnormal pathophysiological states, in particular diabetes, ischemia, and inflammation. Since proton-gated channels are permeable for calcium ions, an antioxidant-induced increase in calcium signalling can be significantly important for a number of biochemical processes occurring in tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. A. Krishtal and V. I. Pidoplichko, “A receptor for protons in the nerve cell membrane,” Neuroscience, 5, 2325–2327 (1980).

    Article  PubMed  CAS  Google Scholar 

  2. M. Paukert, S. Sidi, C. Russell, et al., “A family of acid-sensing ion channels from the zebrafish: widespread expression in the central nervous system suggests a conserved role in neuronal communication,” J. Biol. Chem., 279, 18783–18791 (2004).

    Google Scholar 

  3. B. M. Lomaestro and M. Malone, “Glutathione in health and disease: pharmacotherapeutic issues,” Ann. Pharmacother., 29, 1263–1273 (1995).

    PubMed  CAS  Google Scholar 

  4. L. Ghibelli, C. Fanelli, G. Rotilio, et al., “Rescue of cells from apoptosis by inhibition of active GSH extrusion,” FASEB J., 12, 479–486 (1998).

    PubMed  CAS  Google Scholar 

  5. E. Lingueglia, J. R. de Weille, F. Bassilana, et al., “A modulatory subunit of acid-sensing ion channels in brain and dorsal root ganglion cells,” J. Biol. Chem., 272, 29778–29783 (1997).

    Google Scholar 

  6. W. Retz, W. Gsell, G. Munch, et al., “Free radicals in Alzheimer’s disease,” J. Neural. Transm., Suppl., 54, 221–236 (1998).

    CAS  Google Scholar 

  7. E. Sofic, K. W. Lange, K. Jellinger, et al., “Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease,” Neurosci. Lett., 142, 128–130 (1992).

    Article  PubMed  CAS  Google Scholar 

  8. M. A. Carai, G. Vacca, S. Serra, et al., “Suppression of GABA(B) receptor function in vivo by disulfide reducing agent, DL-dithiothreitol (DTT),” Psychopharmacology, 174, 283–290 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. A. Omerovic, J. P. Leonard, and S. R. Kelso, “Effects of nitroprusside and redox reagents on NMDA receptors expressed in Xenopus oocytes,” Brain Res. Mol./Brain Res., 22, 89–96 (1994).

    Article  CAS  Google Scholar 

  10. R. Waldmann, G. Champigny, F. Bassilana, et al., “Molecular cloning and functional expression of a novel amiloride-sensitive Na+ channel,” J. Biol. Chem., 270, 27411–27414 (1995).

    Google Scholar 

  11. N. J. Allen and D. Attwell, “Modulation of ASIC channels in rat cerebellar Purkinje neurons by ischaemia-related signals,” J. Physiol., 543, 521–529 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. I. Chizhmakov, Y. Yudin, N. Mamenko, et al., “Opioids inhibit purinergic nociceptors in the sensory neurons and fibers of rat via a G protein-dependent mechanism,” Neuropharmacology, 48, 639–647 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. V. I. Pidoplichko, “Two different tetrodotoxin-separable inward sodium currents in the membrane of isolated cardiomyocytes,” Gen. Physiol. Biophys., 5, 593–604 (1986).

    PubMed  CAS  Google Scholar 

  14. L. H. Tang and E. Aizenman, “Long-lasting modification of the N-methyl-D-aspartate receptor channel by a voltage-dependent sulfhydryl redox process,” Mol. Pharmacol., 44, 473–478 (1993).

    PubMed  CAS  Google Scholar 

  15. P. Zhang and C. M. Canessa, “Single channel properties of rat acid-sensitive ion channel-1alpha,-2a, and-3 expressed in Xenopus oocytes,” J. Gen. Physiol., 120, 553–566 (2002).

    Article  PubMed  CAS  Google Scholar 

  16. P. Zhang and C. M. Canessa, “Single-channel properties of recombinant acid-sensitive ion channels formed by the subunits ASIC2 and ASIC3 from dorsal root ganglion neurons expressed in Xenopus oocytes,” J. Gen. Physiol., 117, 563–572 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. R. Waldmann, G. Champigny, F. Bassilana, et al., “A proton-gated cation channel involved in acid sensing,” Nature, 386, 173–177 (1997).

    Article  PubMed  CAS  Google Scholar 

  18. E. L. Bassler, T. J. Ngo-Anh, H. S. Geisler, et al., “Molecular and functional characterization of acid-sensing ion channel (ASIC) 1b,” J. Biol. Chem., 276, 33782–33787 (2001).

    Google Scholar 

  19. A. A. Starkov, C. Chinopoulos, and G. Fiskum, “Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury,” Cell Calcium, 36, 257–264 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. D. S. Warner, H. Sheng, and I. Batinic-Haberle, “Oxidants, antioxidants and the ischemic brain, ” J. Exp. Biol., 207, 3221–3231 (2004).

    Article  PubMed  CAS  Google Scholar 

  21. K. V. Ambrozaitis, E. Kontautas, B. Spakauskas, et al., “Pathophysiology of acute spinal cord injury,” Medicina, 42, 255–261 (2006).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Fedorenko.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 38, No. 3, pp. 193–197, May–June, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorenko, A.L., Lozovaya, N.A., Volkova, T.M. et al. Antioxidant-caused changes in the permeability of proton-gated ion channels for sodium and calcium. Neurophysiology 38, 158–162 (2006). https://doi.org/10.1007/s11062-006-0039-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-006-0039-5

Keywords

Navigation