Skip to main content

Advertisement

Log in

Individualized discrimination of tumor progression from treatment-related changes in different types of adult-type diffuse gliomas using [11C]methionine PET

  • Case Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to assess the ability of [11C]methionine (MET) PET in distinguishing between tumor progression (TP) and treatment-related changes (TRCs) among different types of adult-type diffuse gliomas according to the 2021 World Health Organization classification and predict overall survival (OS).

Methods

We retrospectively selected 113 patients with adult-type diffuse gliomas with suspected TP who underwent MET PET imaging. Maximum and mean tumor-to-background ratios (TBRmax, TBRmean) and metabolic tumor volume (MTV) were calculated. Diagnoses were verified by histopathology (n = 50) or by clinical/radiological follow-up (n = 63). The diagnostic performance of MET PET parameters was evaluated through receiver operating characteristic (ROC) analysis and area under the curve (AUC) calculation. Survival analysis employed the Kaplan–Meier method and Cox proportional-hazards regression.

Results

TP and TRCs were diagnosed in 76 (67%) and 37 (33%) patients, respectively. ROC analysis revealed TBRmax had the best performance in differentiating TP from TRCs with a cut-off of 1.96 in IDH-mutant astrocytoma (AUC, 0.87; sensitivity, 93%; specificity 69%), 1.80 in IDH-mutant and 1p/19q-codeleted oligodendroglioma (AUC, 0.96; sensitivity, 100%; specificity, 89%), and 2.13 in IDH wild-type glioblastoma (AUC, 0.89; sensitivity, 89%; specificity, 78%), respectively. On multivariate analysis, higher TBRmean and MTV were significantly correlated with shorter OS in all IDH-mutant gliomas, as well as in IDH-mutant astrocytoma subgroup.

Conclusion

This work confirms that MET PET has varying diagnostic performances in distinguishing TP from TRCs within three types of adult-type diffuse gliomas, and highlights its high diagnostic accuracy in IDH-mutant and 1p/19q-codeleted oligodendroglioma and potential prognostic value for IDH-mutant gliomas, particularly IDH-mutant astrocytoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Morgan LL (2015) The epidemiology of glioma in adults: a state of the science review. Neuro Oncol 17:623–624. https://doi.org/10.1093/neuonc/nou358

    Article  PubMed  PubMed Central  Google Scholar 

  2. Miller KD, Ostrom QT, Kruchko C, Patil N, Tihan T, Cioffi G, Fuchs HE, Waite KA, Jemal A, Siegel RL, Barnholtz-Sloan JS (2021) Brain and other central nervous system Tumor statistics, 2021. CA Cancer J Clin 71:381–406. https://doi.org/10.3322/caac.21693

    Article  PubMed  Google Scholar 

  3. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, Degroot J, Wick W, Gilbert MR, Lassman AB, Tsien C, Mikkelsen T, Wong ET, Chamberlain MC, Stupp R, Lamborn KR, Vogelbaum MA, van den Bent MJ, Chang SM (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972. https://doi.org/10.1200/JCO.2009.26.3541

    Article  PubMed  Google Scholar 

  4. Gallego Perez-Larraya J, Lahutte M, Petrirena G, Reyes-Botero G, Gonzalez-Aguilar A, Houillier C, Guillevin R, Sanson M, Hoang-Xuan K, Delattre JY (2012) Response assessment in recurrent glioblastoma treated with irinotecan-bevacizumab: comparative analysis of the Macdonald, RECIST, RANO, and RECIST + F criteria. Neuro Oncol 14:667–673. https://doi.org/10.1093/neuonc/nos070

    Article  CAS  PubMed  Google Scholar 

  5. Dhermain FG, Hau P, Lanfermann H, Jacobs AH, van den Bent MJ (2010) Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas. Lancet Neurol 9:906–920. https://doi.org/10.1016/S1474-4422(10)70181-2

    Article  PubMed  Google Scholar 

  6. Albert NL, Weller M, Suchorska B, Galldiks N, Soffietti R, Kim MM, la Fougere C, Pope W, Law I, Arbizu J, Chamberlain MC, Vogelbaum M, Ellingson BM, Tonn JC (2016) Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol 18:1199–1208. https://doi.org/10.1093/neuonc/now058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Herrmann K, Czernin J, Cloughesy T, Lai A, Pomykala KL, Benz MR, Buck AK, Phelps ME, Chen W (2014) Comparison of visual and semiquantitative analysis of 18F-FDOPA-PET/CT for recurrence detection in glioblastoma patients. Neuro Oncol 16:603–609. https://doi.org/10.1093/neuonc/not166

    Article  PubMed  Google Scholar 

  8. Galldiks N, Niyazi M, Grosu AL, Kocher M, Langen KJ, Law I, Minniti G, Kim MM, Tsien C, Dhermain F, Soffietti R, Mehta MP, Weller M, Tonn JC (2021) Contribution of PET imaging to radiotherapy planning and monitoring in glioma patients - a report of the PET/RANO group. Neuro Oncol 23:881–893. https://doi.org/10.1093/neuonc/noab013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. de Zwart PL, van Dijken BRJ, Holtman GA, Stormezand GN, Dierckx R, van Jan P, van der Hoorn A (2020) Diagnostic Accuracy of PET Tracers for the differentiation of Tumor Progression from Treatment-related changes in high-Grade Glioma: a systematic review and metaanalysis. J Nucl Med 61:498–504. https://doi.org/10.2967/jnumed.119.233809

    Article  CAS  PubMed  Google Scholar 

  10. Maurer GD, Brucker DP, Stoffels G, Filipski K, Filss CP, Mottaghy FM, Galldiks N, Steinbach JP, Hattingen E, Langen KJ (2020) (18)F-FET PET imaging in differentiating glioma progression from treatment-related changes: a single-center experience. J Nucl Med 61:505–511. https://doi.org/10.2967/jnumed.119.234757

    Article  PubMed  Google Scholar 

  11. Bashir A, Mathilde Jacobsen S, Molby Henriksen O, Broholm H, Urup T, Grunnet K, Andree Larsen V, Moller S, Skjoth-Rasmussen J, Skovgaard Poulsen H, Law I (2019) Recurrent glioblastoma versus late posttreatment changes: diagnostic accuracy of O-(2-[18F]fluoroethyl)-L-tyrosine positron emission tomography (18F-FET PET). Neuro Oncol 21:1595–1606. https://doi.org/10.1093/neuonc/noz166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Steidl E, Langen KJ, Hmeidan SA, Polomac N, Filss CP, Galldiks N, Lohmann P, Keil F, Filipski K, Mottaghy FM, Shah NJ, Steinbach JP, Hattingen E, Maurer GD (2021) Sequential implementation of DSC-MR perfusion and dynamic [(18)F]FET PET allows efficient differentiation of glioma progression from treatment-related changes. Eur J Nucl Med Mol Imaging 48:1956–1965. https://doi.org/10.1007/s00259-020-05114-0

    Article  CAS  PubMed  Google Scholar 

  13. Werner JM, Stoffels G, Lichtenstein T, Borggrefe J, Lohmann P, Ceccon G, Shah NJ, Fink GR, Langen KJ, Kabbasch C, Galldiks N (2019) Differentiation of treatment-related changes from tumour progression: a direct comparison between dynamic FET PET and ADC values obtained from DWI MRI. Eur J Nucl Med Mol Imaging 46:1889–1901. https://doi.org/10.1007/s00259-019-04384-7

    Article  PubMed  Google Scholar 

  14. Deuschl C, Kirchner J, Poeppel TD, Schaarschmidt B, Kebir S, El Hindy N, Hense J, Quick HH, Glas M, Herrmann K, Umutlu L, Moenninghoff C, Radbruch A, Forsting M, Schlamann M (2018) (11)C-MET PET/MRI for detection of recurrent glioma. Eur J Nucl Med Mol Imaging 45:593–601. https://doi.org/10.1007/s00259-017-3916-9

    Article  CAS  PubMed  Google Scholar 

  15. D’Souza MM, Sharma R, Jaimini A, Panwar P, Saw S, Kaur P, Mondal A, Mishra A, Tripathi RP (2014) 11 C-MET PET/CT and advanced MRI in the evaluation of Tumor recurrence in high-grade gliomas. Clin Nucl Med 39:791–798. https://doi.org/10.1097/RLU.0000000000000532

    Article  PubMed  Google Scholar 

  16. Li DL, Xu YK, Wang QS, Wu HB, Li HS (2012) (1)(1)C-methionine and (1)(8)F-fluorodeoxyglucose positron emission tomography/CT in the evaluation of patients with suspected primary and residual/recurrent gliomas. Chin Med J (Engl) 125:91–96

    CAS  PubMed  Google Scholar 

  17. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  18. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, Soffietti R, von Deimling A, Ellison DW (2021) The 2021 WHO classification of tumors of the Central Nervous System: a summary. Neuro Oncol 23:1231–1251. https://doi.org/10.1093/neuonc/noab106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Weller M, van den Bent M, Preusser M, Le Rhun E, Tonn JC, Minniti G, Bendszus M, Balana C, Chinot O, Dirven L, French P, Hegi ME, Jakola AS, Platten M, Roth P, Ruda R, Short S, Smits M, Taphoorn MJB, von Deimling A, Westphal M, Soffietti R, Reifenberger G, Wick W (2021) EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol 18:170–186. https://doi.org/10.1038/s41571-020-00447-z

    Article  PubMed  Google Scholar 

  20. Berger TR, Wen PY, Lang-Orsini M, Chukwueke UN (2022) World Health Organization 2021 Classification of Central Nervous System Tumors and implications for Therapy for adult-type gliomas: a review. JAMA Oncol 8:1493–1501. https://doi.org/10.1001/jamaoncol.2022.2844

    Article  PubMed  Google Scholar 

  21. Ninatti G, Pini C, Bono BC, Gelardi F, Antunovic L, Fernandes B, Sollini M, Landoni C, Chiti A, Pessina F (2023) The prognostic power of [(11)C]methionine PET in IDH-wildtype diffuse gliomas with lower-grade histological features: venturing beyond WHO classification. J Neurooncol 164:473–481. https://doi.org/10.1007/s11060-023-04438-9

    Article  CAS  PubMed  Google Scholar 

  22. van den Bent MJ, Wefel JS, Schiff D, Taphoorn MJ, Jaeckle K, Junck L, Armstrong T, Choucair A, Waldman AD, Gorlia T, Chamberlain M, Baumert BG, Vogelbaum MA, Macdonald DR, Reardon DA, Wen PY, Chang SM, Jacobs AH (2011) Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol 12:583–593. https://doi.org/10.1016/S1470-2045(11)70057-2

    Article  PubMed  Google Scholar 

  23. Wang K, Qiao Z, Zhao X, Li X, Wang X, Wu T, Chen Z, Fan D, Chen Q, Ai L (2020) Individualized discrimination of Tumor recurrence from radiation necrosis in glioma patients using an integrated radiomics-based model. Eur J Nucl Med Mol Imaging 47:1400–1411. https://doi.org/10.1007/s00259-019-04604-0

    Article  CAS  PubMed  Google Scholar 

  24. Kracht LW, Miletic H, Busch S, Jacobs AH, Voges J, Hoevels M, Klein JC, Herholz K, Heiss WD (2004) Delineation of Brain Tumor extent with [11 C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res 10:7163–7170. https://doi.org/10.1158/1078-0432.CCR-04-0262

    Article  CAS  PubMed  Google Scholar 

  25. Muller M, Winz O, Gutsche R, Leijenaar RTH, Kocher M, Lerche C, Filss CP, Stoffels G, Steidl E, Hattingen E, Steinbach JP, Maurer GD, Heinzel A, Galldiks N, Mottaghy FM, Langen KJ, Lohmann P (2022) Static FET PET radiomics for the differentiation of treatment-related changes from glioma progression. J Neurooncol 159:519–529. https://doi.org/10.1007/s11060-022-04089-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Motegi H, Kamoshima Y, Terasaka S, Kobayashi H, Yamaguchi S, Tanino M, Murata J, Houkin K (2013) IDH1 mutation as a potential novel biomarker for distinguishing pseudoprogression from true progression in patients with glioblastoma treated with temozolomide and radiotherapy. Brain Tumor Pathol 30:67–72. https://doi.org/10.1007/s10014-012-0109-x

    Article  CAS  PubMed  Google Scholar 

  27. Qin D, Yang G, Jing H, Tan Y, Zhao B, Zhang H (2022) Tumor progression and treatment-related changes: Radiological diagnosis challenges for the Evaluation of Post Treated Glioma. Cancers (Basel) 14. https://doi.org/10.3390/cancers14153771

  28. Tripathi M, Sharma R, Varshney R, Jaimini A, Jain J, Souza MM, Bal J, Pandey S, Kumar N, Mishra AK, Mondal A (2012) Comparison of F-18 FDG and C-11 methionine PET/CT for the evaluation of recurrent primary brain tumors. Clin Nucl Med 37:158–163. https://doi.org/10.1097/RLU.0b013e318238f51a

    Article  PubMed  Google Scholar 

  29. Terakawa Y, Tsuyuguchi N, Iwai Y, Yamanaka K, Higashiyama S, Takami T, Ohata K (2008) Diagnostic accuracy of 11 C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49:694–699. https://doi.org/10.2967/jnumed.107.048082

    Article  PubMed  Google Scholar 

  30. Werner JM, Weller J, Ceccon G, Schaub C, Tscherpel C, Lohmann P, Bauer EK, Schafer N, Stoffels G, Baues C, Celik E, Marnitz S, Kabbasch C, Gielen GH, Fink GR, Langen KJ, Herrlinger U, Galldiks N (2021) Diagnosis of Pseudoprogression following lomustine-temozolomide chemoradiation in newly diagnosed Glioblastoma patients using FET-PET. Clin Cancer Res 27:3704–3713. https://doi.org/10.1158/1078-0432.CCR-21-0471

    Article  CAS  PubMed  Google Scholar 

  31. Galldiks N, Stoffels G, Filss C, Rapp M, Blau T, Tscherpel C, Ceccon G, Dunkl V, Weinzierl M, Stoffel M, Sabel M, Fink GR, Shah NJ, Langen KJ (2015) The use of dynamic O-(2-18F-fluoroethyl)-l-tyrosine PET in the diagnosis of patients with Progressive and recurrent glioma. Neuro Oncol 17:1293–1300. https://doi.org/10.1093/neuonc/nov088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cancer Genome Atlas Research N, Brat DJ, Verhaak RG et al (2015) Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N Engl J Med 372:2481–2498. https://doi.org/10.1056/NEJMoa1402121

  33. Kaloshi G, Benouaich-Amiel A, Diakite F, Taillibert S, Lejeune J, Laigle-Donadey F, Renard MA, Iraqi W, Idbaih A, Paris S, Capelle L, Duffau H, Cornu P, Simon JM, Mokhtari K, Polivka M, Omuro A, Carpentier A, Sanson M, Delattre JY, Hoang-Xuan K (2007) Temozolomide for low-grade gliomas: predictive impact of 1p/19q loss on response and outcome. Neurology 68:1831–1836. https://doi.org/10.1212/01.wnl.0000262034.26310.a2

    Article  CAS  PubMed  Google Scholar 

  34. Kracht LW, Friese M, Herholz K, Schroeder R, Bauer B, Jacobs A, Heiss WD (2003) Methyl-[11 C]- l-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur J Nucl Med Mol Imaging 30:868–873. https://doi.org/10.1007/s00259-003-1148-7

    Article  CAS  PubMed  Google Scholar 

  35. Roodakker KR, Alhuseinalkhudhur A, Al-Jaff M, Georganaki M, Zetterling M, Berntsson SG, Danfors T, Strand R, Edqvist PH, Dimberg A, Larsson EM, Smits A (2019) Region-by-region analysis of PET, MRI, and histology in en bloc-resected oligodendrogliomas reveals intra-tumoral heterogeneity. Eur J Nucl Med Mol Imaging 46:569–579. https://doi.org/10.1007/s00259-018-4107-z

    Article  PubMed  Google Scholar 

  36. Ninatti G, Sollini M, Bono B, Gozzi N, Fedorov D, Antunovic L, Gelardi F, Navarria P, Politi LS, Pessina F, Chiti A (2022) Preoperative [11 C]methionine PET to personalize treatment decisions in patients with lower-grade gliomas. Neuro Oncol 24:1546–1556. https://doi.org/10.1093/neuonc/noac040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Takei H, Shinoda J, Ikuta S, Maruyama T, Muragaki Y, Kawasaki T, Ikegame Y, Okada M, Ito T, Asano Y, Yokoyama K, Nakayama N, Yano H, Iwama T (2019) Usefulness of positron emission tomography for differentiating gliomas according to the 2016 World Health Organization classification of tumors of the central nervous system. J Neurosurg 1–10. https://doi.org/10.3171/2019.5.JNS19780

  38. Galldiks N, Dunkl V, Stoffels G, Hutterer M, Rapp M, Sabel M, Reifenberger G, Kebir S, Dorn F, Blau T, Herrlinger U, Hau P, Ruge MI, Kocher M, Goldbrunner R, Fink GR, Drzezga A, Schmidt M, Langen KJ (2015) Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-L-tyrosine PET. Eur J Nucl Med Mol Imaging 42:685–695. https://doi.org/10.1007/s00259-014-2959-4

    Article  CAS  PubMed  Google Scholar 

  39. Cicone F, Carideo L, Scaringi C, Romano A, Mamede M, Papa A, Tofani A, Cascini GL, Bozzao A, Scopinaro F, Minniti G (2021) Long-term metabolic evolution of brain metastases with suspected radiation necrosis following stereotactic radiosurgery: longitudinal assessment by F-DOPA PET. Neuro Oncol 23:1024–1034. https://doi.org/10.1093/neuonc/noaa239

    Article  CAS  PubMed  Google Scholar 

  40. Rozenblum L, Zaragori T, Tran S, Morales-Martinez A, Taillandier L, Blonski M, Rech F, Galanaud D, Kas A, Verger A (2023) Differentiating high-grade glioma progression from treatment-related changes with dynamic [(18)F]FDOPA PET: a multicentric study. Eur Radiol 33:2548–2560. https://doi.org/10.1007/s00330-022-09221-4

    Article  CAS  PubMed  Google Scholar 

  41. Skoblar Vidmar M, Doma A, Smrdel U, Zevnik K, Studen A (2022) The value of FET PET/CT in recurrent glioma with a different IDH mutation status: the relationship between imaging and molecular biomarkers. Int J Mol Sci 23. https://doi.org/10.3390/ijms23126787

  42. Celli M, Caroli P, Amadori E, Arpa D, Gurrieri L, Ghigi G, Cenni P, Paganelli G, Matteucci F (2021) Diagnostic and prognostic potential of (18)F-FET PET in the Differential diagnosis of Glioma Recurrence and Treatment-Induced Changes after Chemoradiation Therapy. Front Oncol 11:721821. https://doi.org/10.3389/fonc.2021.721821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wollring MM, Werner JM, Ceccon G, Lohmann P, Filss CP, Fink GR, Langen KJ, Galldiks N (2023) Clinical applications and prospects of PET imaging in patients with IDH-mutant gliomas. J Neurooncol 162:481–488. https://doi.org/10.1007/s11060-022-04218-x

    Article  PubMed  Google Scholar 

  44. Ostrom QT, Shoaf ML, Cioffi G, Waite K, Kruchko C, Wen PY, Brat DJ, Barnholtz-Sloan JS, Iorgulescu JB (2023) National-level overall survival patterns for molecularly-defined diffuse glioma types in the United States. Neuro Oncol 25:799–807. https://doi.org/10.1093/neuonc/noac198

    Article  CAS  PubMed  Google Scholar 

  45. Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, Morozova O, Newton Y, Radenbaugh A, Pagnotta SM, Anjum S, Wang J, Manyam G, Zoppoli P, Ling S, Rao AA, Grifford M, Cherniack AD, Zhang H, Poisson L, Carlotti CG Jr., Tirapelli DP, Rao A, Mikkelsen T, Lau CC, Yung WK, Rabadan R, Huse J, Brat DJ, Lehman NL, Barnholtz-Sloan JS, Zheng S, Hess K, Rao G, Meyerson M, Beroukhim R, Cooper L, Akbani R, Wrensch M, Haussler D, Aldape KD, Laird PW, Gutmann DH, Network TR, Noushmehr H, Iavarone A, Verhaak RG (2016) Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164:550–563. https://doi.org/10.1016/j.cell.2015.12.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moller S, Law I, Munck Af Rosenschold P, Costa J, Poulsen HS, Engelholm SA, Engelholm S (2016) Prognostic value of (18)F-FET PET imaging in re-irradiation of high-grade glioma: results of a phase I clinical trial. Radiother Oncol 121:132–137. https://doi.org/10.1016/j.radonc.2016.08.014

    Article  CAS  PubMed  Google Scholar 

  47. Lohmann P, Stavrinou P, Lipke K, Bauer EK, Ceccon G, Werner JM, Neumaier B, Fink GR, Shah NJ, Langen KJ, Galldiks N (2019) FET PET reveals considerable spatial differences in tumour burden compared to conventional MRI in newly diagnosed glioblastoma. Eur J Nucl Med Mol Imaging 46:591–602. https://doi.org/10.1007/s00259-018-4188-8

    Article  CAS  PubMed  Google Scholar 

  48. Law I, Albert NL, Arbizu J, Boellaard R, Drzezga A, Galldiks N, la Fougere C, Langen KJ, Lopci E, Lowe V, McConathy J, Quick HH, Sattler B, Schuster DM, Tonn JC, Weller M (2019) Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [(18)F]FDG: version 1.0. Eur J Nucl Med Mol Imaging 46:540–557. https://doi.org/10.1007/s00259-018-4207-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Yongzhong Zhang for the efforts of radiopharmaceuticals synthesis; Wei Zhang, Qingsong Long, and Tong Wu for the image data acquisition.

Funding

This study was supported by the National Natural Science Foundation of China (82001769 to K.W.).

Author information

Authors and Affiliations

Authors

Contributions

Study Design: L.A. and Q.C. Manuscript writing and editing: Q.C., K.W. and L.A. Data collection: Q.C., K.W., X.R., X.Z., D.F., S.Z., and X.L. Image processing and analysis: Q.C., K.W., L.A., S.Z., and Q.C. Statistical analyses: Q.C. and K.W. Pathological analysis: X.R. All the authors reviewed the manuscript.

Corresponding author

Correspondence to Lin Ai.

Ethics declarations

Ethics approval

This retrospective study was approved by the Institutional Review Board of the Ethics Committee of Beijing Tiantan Hospital, Capital Medical University and the requirement for written informed consent was waived.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Wang, K., Ren, X. et al. Individualized discrimination of tumor progression from treatment-related changes in different types of adult-type diffuse gliomas using [11C]methionine PET. J Neurooncol 165, 547–559 (2023). https://doi.org/10.1007/s11060-023-04529-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-023-04529-7

Keywords

Navigation