Skip to main content

Advertisement

Log in

Qualitative MR features to identify non-enhancing tumors within glioblastoma’s T2-FLAIR hyperintense lesions

  • Research
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

To identify qualitative MRI features of non-(contrast)-enhancing tumor (nCET) in glioblastoma’s T2-FLAIR hyperintense lesion.

Methods

Thirty-three histologically confirmed glioblastoma patients whose T1-, T2- and contrast-enhanced T1-weighted MRI and 11C-methionine positron emission tomography (Met-PET) were available were included in this study. Met-PET was utilized as a surrogate for tumor burden. Imaging features for identifying nCET were searched by qualitative examination of 156 targets. A new scoring system to identify nCET was established and validated by two independent observers.

Results

Three imaging features were found helpful for identifying nCET; “Bulky gray matter involvement”, “Around the rim of contrast-enhancement (Around-rim),” and “High-intensity on T1WI and low-intensity on T2WI (HighT1LowT2)” resulting in an nCET score = 2 × Bulky gray matter involvement – 2 × Around-rim + HighT1LowT2 + 2. The nCET score’s classification performances of two independent observers measured by AUC were 0.78 and 0.80, with sensitivities and specificities using a threshold of four being 0.443 and 0.771, and 0.916 and 0.768, respectively. The weighted kappa coefficient for the nCET score was 0.946.

Conclusion

The current investigation demonstrated that qualitative assessments of glioblastoma’s MRI might help identify nCET in T2/FLAIR high-intensity lesions. The novel nCET score is expected to aid in expanding treatment targets within the T2/FLAIR high-intensity lesions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data generated and analyzed during the current study are not publicly available for legal/ethical reasons but are available from the corresponding author upon reasonable request.

References

  1. Sanai N, Polley MY, McDermott MW et al (2011) An extent of resection threshold for newly diagnosed glioblastomas: clinical article. J Neurosurg 115:3–8. https://doi.org/10.3171/2011.2.jns10998

    Article  PubMed  Google Scholar 

  2. Li YM, Suki D, Hess K, Sawaya R (2016) The influence of maximum safe resection of glioblastoma on survival in 1229 patients: can we do better than gross-total resection? J Neurosurg 124:977–988. https://doi.org/10.3171/2015.5.jns142087

    Article  PubMed  Google Scholar 

  3. Lacroix M, Abi-Said D, Fourney DR et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:190–198. https://doi.org/10.3171/jns.2001.95.2.0190

    Article  CAS  PubMed  Google Scholar 

  4. Kinoshita M, Arita H, Okita Y et al (2016) Comparison of diffusion tensor imaging and 11 C-methionine positron emission tomography for reliable prediction of tumor cell density in gliomas. J Neurosurg 125:1136–1142. https://doi.org/10.3171/2015.11.jns151848

    Article  PubMed  Google Scholar 

  5. Molinaro AM, Hervey-Jumper S, Morshed RA et al (2020) Association of maximal extent of resection of contrast-enhanced and non–contrast-enhanced tumor with survival within molecular subgroups of patients with newly diagnosed glioblastoma. Jama Oncol 6:495–503. https://doi.org/10.1001/jamaoncol.2019.6143

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sengupta A, Agarwal S, Gupta PK et al (2018) On differentiation between vasogenic edema and non-enhancing tumor in high-grade glioma patients using a support vector machine classifier based upon pre and post-surgery MRI images. Eur J Radiol 106:199–208. https://doi.org/10.1016/j.ejrad.2018.07.018

    Article  PubMed  Google Scholar 

  7. Takahashi S, Takahashi M, Kinoshita M et al (2021) Fine-tuning approach for segmentation of gliomas in brain magnetic resonance images with a machine learning method to normalize image differences among facilities. Cancers 13:1415. https://doi.org/10.3390/cancers13061415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pope WB, Sayre J, Perlina A et al (2005) MR imaging correlates of survival in patients with high-grade gliomas. AJNR Am J Neuroradiol 26:2466–2474

    PubMed  PubMed Central  Google Scholar 

  9. Lasocki A, Gaillard F, Tacey M et al (2015) Incidence and prognostic significance of non-enhancing cortical signal abnormality in glioblastoma. J Méd Imaging Radiat Oncol 60:66–73. https://doi.org/10.1111/1754-9485.12421

    Article  PubMed  Google Scholar 

  10. Lasocki A, Gaillard F (2019) Non-contrast-enhancing tumor: a new frontier in glioblastoma research. Am J Neuroradiol 40:758–765. https://doi.org/10.3174/ajnr.a6025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kracht LW, Miletic H, Busch S et al (2004) Delineation of brain tumor extent with [11C]l-methionine positron emission tomography. Clin Cancer Res 10:7163–7170. https://doi.org/10.1158/1078-0432.ccr-04-0262

    Article  CAS  PubMed  Google Scholar 

  12. Okita Y, Kinoshita M, Goto T et al (2010) 11C-methionine uptake correlates with tumor cell density rather than with microvessel density in glioma: a stereotactic image-histology comparison. Neuroimage 49:2977–2982. https://doi.org/10.1016/j.neuroimage.2009.11.024

    Article  PubMed  Google Scholar 

  13. Kinoshita M, Arita H, Goto T et al (2012) A novel PET index, 18F-FDG–11C-methionine uptake decoupling score, reflects glioma cell infiltration. J Nucl Med 53:1701–1708. https://doi.org/10.2967/jnumed.112.104992

    Article  PubMed  Google Scholar 

  14. Verburg N, Hoefnagels FWA, Barkhof F et al (2017) Diagnostic accuracy of neuroimaging to delineate diffuse gliomas within the brain: a meta-analysis. Am J Neuroradiol 38:1884–1891. https://doi.org/10.3174/ajnr.a5368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arita H, Kinoshita M, Kagawa N et al (2011) 11C-methionine uptake and intraoperative 5‐aminolevulinic acid‐induced fluorescence as separate index markers of cell density in glioma. Cancer 118:1619–1627. https://doi.org/10.1002/cncr.26445

    Article  CAS  PubMed  Google Scholar 

  16. Galldiks N, Ullrich R, Schroeter M et al (2010) Volumetry of [11C]-methionine PET uptake and MRI contrast enhancement in patients with recurrent glioblastoma multiforme. Eur J Nucl Med Mol I 37:84–92. https://doi.org/10.1007/s00259-009-1219-5

    Article  Google Scholar 

  17. Nariai T, Tanaka Y, Wakimoto H et al (2005) Usefulness of l -[methyl-11C] methionine—positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg 103:498–507. https://doi.org/10.3171/jns.2005.103.3.0498

    Article  PubMed  Google Scholar 

  18. Hatakeyama T, Kawai N, Nishiyama Y et al (2008) 11C-methionine (MET) and 18F-fluorothymidine (FLT) PET in patients with newly diagnosed glioma. Eur J Nucl Med Mol I 35:2009–2017. https://doi.org/10.1007/s00259-008-0847-5

    Article  CAS  Google Scholar 

  19. Čížek J, Herholz K, Vollmar S et al (2004) Fast and robust registration of PET and MR images of human brain. Neuroimage 22:434–442. https://doi.org/10.1016/j.neuroimage.2004.01.016

    Article  PubMed  Google Scholar 

  20. D’Alessio A, Proietti G, Sica G, Scicchitano BM (2019) Pathological and molecular features of glioblastoma and its peritumoral tissue. Cancers 11:469. https://doi.org/10.3390/cancers11040469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. de Leeuw CN, Vogelbaum MA (2018) Supratotal resection in glioma: a systematic review. Neuro-Oncol 21:179–188. https://doi.org/10.1093/neuonc/noy166

    Article  PubMed Central  Google Scholar 

  22. Verburg N, Koopman T, Yaqub MM et al (2019) Improved detection of diffuse glioma infiltration with imaging combinations: a diagnostic accuracy study. Neurooncology 22:412–422. https://doi.org/10.1093/neuonc/noz180

    Article  CAS  Google Scholar 

  23. Yan JL, Li C, van der Hoorn A et al (2020) A neural network approach to identify the peritumoral invasive areas in glioblastoma patients by using MR radiomics. Sci Rep 10:9748. https://doi.org/10.1038/s41598-020-66691-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chang PD, Malone HR, Bowden SG et al (2017) A multiparametric model for mapping cellularity in glioblastoma using radiographically localized biopsies. Am J Neuroradiol 38:890–898. https://doi.org/10.3174/ajnr.a5112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lasocki A, Gaillard F, Tacey M et al (2018) Morphologic patterns of noncontrast-enhancing tumor in glioblastoma correlate with IDH1 mutation status and patient survival. J Clin Neurosci 47:168–173. https://doi.org/10.1016/j.jocn.2017.09.007

    Article  PubMed  Google Scholar 

  26. Muccio CF, Tarantino A, Esposito G, Cerase A (2011) Differential diagnosis by unenhanced FLAIR T2-weighted magnetic resonance images between solitary high grade gliomas and cerebral metastases appearing as contrast-enhancing cortico-subcortical lesions. J Neuro-Oncol 103:713–717. https://doi.org/10.1007/s11060-010-0454-8

    Article  Google Scholar 

  27. Kinoshita M, Uchikoshi M, Tateishi S et al (2021) Magnetic resonance relaxometry for tumor cell density imaging for glioma: an exploratory study via 11C-methionine PET and its validation via stereotactic tissue sampling. Cancers 13:4067. https://doi.org/10.3390/cancers13164067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yamamoto S, Sanada T, Sakai M et al (2022) Prediction and visualization of non-enhancing tumor in glioblastoma via T1w/T2w-ratio map. Brain Sci 12:99. https://doi.org/10.3390/brainsci12010099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hirata T, Kinoshita M, Tamari K et al (2018) 11C-methionine-18F-FDG dual-PET-tracer–based target delineation of malignant glioma: evaluation of its geometrical and clinical features for planning radiation therapy. J Neurosurg 131:676–686. https://doi.org/10.3171/2018.4.jns1859

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.S., A.A., N.K., E.S., and K.N. acquired data. S.Y., Y.O., H.A., T.S., and M.K. analyzed the data. H.K. supervised the research project. M.K conceptualized the research. All authors reviewed the manuscript.

Corresponding author

Correspondence to Manabu Kinoshita.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, S., Okita, Y., Arita, H. et al. Qualitative MR features to identify non-enhancing tumors within glioblastoma’s T2-FLAIR hyperintense lesions. J Neurooncol 165, 251–259 (2023). https://doi.org/10.1007/s11060-023-04454-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-023-04454-9

Keywords

Navigation