Skip to main content

Advertisement

Log in

A systematic review and meta-analysis of the effects of tranexamic acid in surgical procedure for intracranial meningioma

  • Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

During intracranial meningioma surgery, surgeons experience considerable blood loss. Tranexamic acid (TXA) is used to minimize blood loss in several neurosurgical settings. However, evidence and trials are lacking. Our objective is to establish the most recent evidence on TXA safety and efficacy in intracranial meningioma surgery.

Methodology

Based upon Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), the authors collected fully published English literature on the administration of tranexamic acid for patients undergoing intracranial meningioma surgery using the keywords [“tranexamic acid” and “meningioma”] and its synonyms from Cochrane Central Database, the WHO International Clinical Trials Registry Platform (ICTRP), ClinicalTrials.gov, and PubMed. The primary outcome of the current study was total blood loss. The secondary outcomes include individuals requiring blood transfusion, anesthesia duration, surgical duration, and complication rate. Each included studies' quality was assessed using the JADAD scale.

Results

For qualitative and quantitative data synthesis, we included five RCTs (n = 321) with the mean age was 47.5 ± 11.9 years for the intervention group and 47.2 ± 11.9 years for the control group. Our meta-analysis showed that the administration of TXA is associated with decreased total blood loss of standardized mean difference (SMD) of −1.40 (95% CI [−2.49, −0.31]), anesthetic time SMD −0.36 (95% CI [−0.63, −0.09]), and blood transfusion requirements RR 0.58 (95% CI [0.34, 0.99]).

Conclusions

The current study showed that TXA was associated with reduced intraoperative blood loss and intra- and postoperative blood transfusion. However, the studies are small. More RCT studies with a greater sample size are favorable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

TXA:

Tranexamic acid

PRISMA:

Preferred Reporting Items for Systematic Reviews and Meta-Analyses

ICTRP:

International Clinical Trials Registry Platform

RR:

Risk ratio

MD:

Mean difference

CI:

Confidence interval

RCT:

Randomized controlled trial

N:

Number

mL:

Millilitre

min:

Minute

mg:

Milligram

kg:

Kilogram

h:

Hour

NS:

Normal saline

vs:

Versus

References

  1. Ostrom QT, Cioffi G, Gittleman H et al (2019) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol 21:1–100. https://doi.org/10.1093/neuonc/noz150

    Article  Google Scholar 

  2. Fathi A-R, Roelcke U (2013) Meningioma. Curr Neurol Neurosci Rep 13:337. https://doi.org/10.1007/s11910-013-0337-4

    Article  CAS  PubMed  Google Scholar 

  3. Marosi C, Hassler M, Roessler K et al (2008) Meningioma. Crit Rev Oncol Hematol 67:153–171. https://doi.org/10.1016/j.critrevonc.2008.01.010

    Article  PubMed  Google Scholar 

  4. Cappabianca P, Cavallo LM, Esposito F et al (2008) Extended endoscopic endonasal approach to the midline skull base: the evolving role of transsphenoidal surgery. Adv Tech Stand Neurosurg 33:151–199. https://doi.org/10.1007/978-3-211-72283-1_4

    Article  CAS  PubMed  Google Scholar 

  5. Teng Z, Zhu Y, Liu Y et al (2015) Restrictive blood transfusion strategies and associated infection in orthopedic patients: a meta-analysis of 8 randomized controlled trials. Sci Rep 5:13421. https://doi.org/10.1038/srep13421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maw G, Furyk C (2018) Pediatric massive transfusion: a systematic review. Pediatr Emerg Care 34:594–598. https://doi.org/10.1097/PEC.0000000000001570

    Article  PubMed  Google Scholar 

  7. Gremmel T, Frelinger AL, Michelson AD (2016) Platelet physiology. Semin Thromb Hemost 42:191–204. https://doi.org/10.1055/s-0035-1564835

    Article  CAS  PubMed  Google Scholar 

  8. Levy JH, Koster A, Quinones QJ et al (2018) Antifibrinolytic therapy and perioperative considerations. Anesthesiology 128:657–670. https://doi.org/10.1097/ALN.0000000000001997

    Article  CAS  PubMed  Google Scholar 

  9. Sigaut S, Tremey B, Ouattara A et al (2014) Comparison of two doses of tranexamic acid in adults undergoing cardiac surgery with cardiopulmonary bypass. Anesthesiology 120:590–600. https://doi.org/10.1097/ALN.0b013e3182a443e8

    Article  CAS  PubMed  Google Scholar 

  10. Pinosky ML, Kennedy DJ, Fishman RL et al (1997) Tranexamic acid reduces bleeding after cardiopulmonary bypass when compared to epsilon aminocaproic acid and placebo. J Card Surg 12:330–338. https://doi.org/10.1111/j.1540-8191.1997.tb00147.x

    Article  CAS  PubMed  Google Scholar 

  11. Lee SY, Chong S, Balasubramanian D et al (2017) What is the ideal route of administration of tranexamic acid in TKA? A randomized controlled trial. Clin Orthop Relat Res 475:1987–1996. https://doi.org/10.1007/s11999-017-5311-z

    Article  PubMed  PubMed Central  Google Scholar 

  12. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:1–9. https://doi.org/10.1136/BMJ.N71

    Article  Google Scholar 

  13. Rethlefsen ML, Kirtley S, Waffenschmidt S et al (2021) (2021) PRISMA-S: an extension to the PRISMA statement for reporting literature searches in systematic reviews. Syst Rev 101(10):1–19. https://doi.org/10.1186/S13643-020-01542-Z

    Article  Google Scholar 

  14. Wijaya JH, July J, Quintero-Consuegra M (2021) A systematic review and meta-analysis of the effects of tranexamic acid in surgical procedure for intracranial meningioma. PROSPERO 2021 CRD42021272386. https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021272386. Accessed 7 Mar 2022

  15. Jadad AR, Moore RA, Carroll D et al (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17:1–12. https://doi.org/10.1016/0197-2456(95)00134-4

    Article  CAS  PubMed  Google Scholar 

  16. Hooda B, Chouhan RS, Rath GP et al (2017) Effect of tranexamic acid on intraoperative blood loss and transfusion requirements in patients undergoing excision of intracranial meningioma. J Clin Neurosci 41:132–138. https://doi.org/10.1016/j.jocn.2017.02.053

    Article  CAS  PubMed  Google Scholar 

  17. Sutanto S, Yulianti Bisri D, Bisri T (2019) Pengaruh Asam Traneksamat Intravena terhadap Jumlah Perdarahan Intraoperatif dan Kebutuhan Transfusi pada Operasi Meningioma. J Neuroanestesi Indones 8:8–16. https://doi.org/10.24244/jni.vol8i1.200

    Article  Google Scholar 

  18. Siddiqui A, Raman R, Arshad Z et al (2018) Use of tranexamic acid to reduce intraoperative bleeding in craniotomy for meningioma patients. Asian Arch Anesthesiol Resusc 1:1–13

    Google Scholar 

  19. Rebai L, Mahfoudhi N, Fitouhi N et al (2021) Intraoperative tranexamic acid use in patients undergoing excision of intracranial meningioma: randomized, placebo-controlled trial. Surg Neurol Int 12:289. https://doi.org/10.25259/SNI_177_2021

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ravi GK, Panda N, Ahluwalia J et al (2021) Effect of tranexamic acid on blood loss, coagulation profile, and quality of surgical field in intracranial meningioma resection: a prospective randomized, double-blind, placebo-controlled study. Surg Neurol Int 12:272. https://doi.org/10.25259/SNI_296_2021

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lecker I, Wang D-S, Whissell PD et al (2016) Tranexamic acid-associated seizures: causes and treatment. Ann Neurol 79:18–26. https://doi.org/10.1002/ana.24558

    Article  CAS  PubMed  Google Scholar 

  22. Schwinn DA, Mackensen GB, Brown EN (2012) Understanding the TXA seizure connection. J Clin Invest 122:4339–4341. https://doi.org/10.1172/JCI66724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hvas A-M, Sørensen HT, Norengaard L et al (2007) Tranexamic acid combined with recombinant factor VIII increases clot resistance to accelerated fibrinolysis in severe hemophilia A. J Thromb Haemost 5:2408–2414. https://doi.org/10.1111/j.1538-7836.2007.02755.x

    Article  CAS  PubMed  Google Scholar 

  24. Ker K, Prieto-Merino D, Roberts I (2013) Systematic review, meta-analysis and meta-regression of the effect of tranexamic acid on surgical blood loss. Br J Surg 100:1271–1279. https://doi.org/10.1002/bjs.9193

    Article  CAS  PubMed  Google Scholar 

  25. Zufferey PJ, Lanoiselée J, Graouch B et al (2021) Exposure-response relationship of tranexamic acid in cardiac surgery. Anesthesiology 134:165–178. https://doi.org/10.1097/ALN.0000000000003633

    Article  CAS  PubMed  Google Scholar 

  26. Heyns M, Knight P, Steve AK, Yeung JK (2021) A Single Preoperative dose of tranexamic acid reduces perioperative blood loss: a meta-analysis. Ann Surg 273:75–81. https://doi.org/10.1097/SLA.0000000000003793

    Article  PubMed  Google Scholar 

  27. Vel R, Udupi BP, Satya Prakash MVS et al (2015) Effect of low dose tranexamic acid on intra-operative blood loss in neurosurgical patients. Saudi J Anaesth 9:42–48. https://doi.org/10.4103/1658-354X.146304

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dadure C, Sauter M, Bringuier S et al (2011) Intraoperative tranexamic acid reduces blood transfusion in children undergoing craniosynostosis surgery: a randomized double-blind study. Anesthesiology 114:856–861. https://doi.org/10.1097/ALN.0b013e318210f9e3

    Article  CAS  PubMed  Google Scholar 

  29. CRASH-2 trial collaborators, Shakur H, Roberts I et al (2010) Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet (London, England) 376:23–32. https://doi.org/10.1016/S0140-6736(10)60835-5

    Article  CAS  Google Scholar 

  30. Dewan Y, Komolafe EO, Mejía-Mantilla JH et al (2012) CRASH-3 - tranexamic acid for the treatment of significant traumatic brain injury: study protocol for an international randomized, double-blind, placebo-controlled trial. Trials 13:87. https://doi.org/10.1186/1745-6215-13-87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baharoglu MI, Germans MR, Rinkel GJ et al (2013) Antifibrinolytic therapy for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD001245.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  32. Brown NJ, Wilson B, Ong V et al (2022) Use of tranexamic acid for elective resection of intracranial neoplasms: a systematic review. World Neurosurg. https://doi.org/10.1016/j.wneu.2021.12.117

    Article  PubMed  Google Scholar 

  33. Li S, Yan X, Li R et al (2022) Safety of intravenous tranexamic acid in patients undergoing supratentorial meningiomas resection: protocol for a randomised, parallel-group, placebo control, non-inferiority trial. BMJ Open 12:e052095. https://doi.org/10.1136/bmjopen-2021-052095

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pin P (2020) Tranexamic acid reduce blood loss in meningioma resection. In: ClinicalTrials.gov.https://clinicaltrials.gov/ct2/show/NCT04386642?cond=tranexamic+acid+and+meningioma&draw=2&rank=2 . Accessed 7 Mar 2022

  35. Peng Y (2020) The safety of intravenous tranexamic acid in patients undergoing supratentorial meningiomas resection (STAMP). In: ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT04595786?cond=tranexamic+acid+and+meningioma&draw=2&rank=3 Accessed 7 Mar 2022

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by JHW, JJ, MQC, and DPC. The first draft of the manuscript was written by JHW and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jeremiah Hilkiah Wijaya.

Ethics declarations

Conflict of interest

None.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 40 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wijaya, J.H., July, J., Quintero-Consuegra, M. et al. A systematic review and meta-analysis of the effects of tranexamic acid in surgical procedure for intracranial meningioma. J Neurooncol 161, 383–393 (2023). https://doi.org/10.1007/s11060-023-04237-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-023-04237-2

Keywords

Navigation