Skip to main content

Advertisement

Log in

Hormone therapies in meningioma-where are we?

  • Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Introduction

Meningiomas are associated with several gonadal steroid hormone-related risk factors and demonstrate a predominance in females. These associations led to investigations of the role that hormones may have on meningioma growth and development. While it is now accepted that most meningiomas express progesterone and somatostatin receptors, the conclusion for other receptors has been less definitive.

Methods

We performed a review of what is known regarding the relationship between hormones and meningiomas in the published literature. Furthermore, we reviewed clinical trials related to hormonal agents in meningiomas using MEDLINE PubMed, Scopus, and the NIH clinical trials database.

Results

We identify that all steroid-hormone trials lacked receptor identification or positive receptor status in the majority of patients. In contrast, four out of five studies involving somatostatin analogs used positive receptor status as part of the inclusion criteria.

Conclusions

Several clinical trials have recently been completed or are now underway using somatostatin analogs in combination with other therapies that appear promising, but a reevaluation of hormone-based monotherapy is warranted. Synthesizing this evidence, we clarify the remaining questions and present future directions for the study of the biological role and therapeutic potential of hormones in meningioma and discuss how the stratification of patients using features such as grade, receptor status, and somatic mutations, might be used for future trials to select patients most likely to benefit from specific therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Claus EB et al (2013) Exogenous hormone use, reproductive factors, and risk of intracranial meningioma in females: clinical article. J Neurosurg 118(3):649–656

    Article  CAS  PubMed  Google Scholar 

  2. Fodi C et al (2021) The immunohistochemical expression of SSTR2A is an independent prognostic factor in meningioma. Neurosurg Rev 45:2671–2679

    Article  PubMed  PubMed Central  Google Scholar 

  3. Behling F et al (2022) Differences in the expression of SSTR1–5 in meningiomas and its therapeutic potential. Neurosurg Rev 45(1):467–478

    Article  PubMed  Google Scholar 

  4. Donnell MS, Meyer GA, Donegan WL (1979) Estrogen-receptor protein in intracranial meningiomas. J Neurosurg 50(4):499–502

    Article  CAS  PubMed  Google Scholar 

  5. Markwalder T-M et al (1983) Estrogen and progesterone receptors in meningiomas in relation to clinical and pathologic features. Surg Neurol 20(1):42–47

    Article  CAS  PubMed  Google Scholar 

  6. Gil M et al (2011) Risk of meningioma among users of high doses of cyproterone acetate as compared with the general population: evidence from a population-based cohort study. Br J Clin Pharmacol 72(6):965–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee KS et al (2022) A systematic review and meta-analysis of the association between cyproterone acetate and intracranial meningiomas. Sci Rep 12(1):1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Peyre M et al (2018) Progestin-associated shift of meningioma mutational landscape. Ann Oncol 29(3):681–686

    Article  CAS  PubMed  Google Scholar 

  9. Samarut E et al (2021) Meningiomas and cyproterone acetate: a retrospective, monocentric cohort of 388 patients treated by surgery or radiotherapy for intracranial meningioma. J Neuro-Oncol 152(1):115–123

    Article  CAS  Google Scholar 

  10. Cushing H (1938) Meningiomas: their classification, regional behavior, life history, and surgical end result. Springfield Charles C Thomas 111:735

    Google Scholar 

  11. Wiemels J, Wrensch M, Claus EB (2010) Epidemiology and etiology of meningioma. J Neuro-Oncol 99(3):307–314

    Article  Google Scholar 

  12. Brinton RD et al (2015) Perimenopause as a neurological transition state. Nat Rev Endocrinol 11(7):393–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Youngblood MW et al (2019) Correlations between genomic subgroup and clinical features in a cohort of more than 3000 meningiomas. J Neurosurg 133(5):1345–1354

    Article  Google Scholar 

  14. Youngblood MW et al (2021) Associations of meningioma molecular subgroup and tumor recurrence. Neuro-Oncology 23(5):783–794

    Article  CAS  PubMed  Google Scholar 

  15. Apra C et al (2020) Female gender and exogenous progesterone exposition as risk factors for spheno-orbital meningiomas. J Neuro-Oncol 149(1):95–101

    Article  CAS  Google Scholar 

  16. Meling TR et al (2019) Meningiomas: skull base versus non-skull base. Neurosurg Rev 42(1):163–173

    Article  PubMed  Google Scholar 

  17. Pier DB et al (2014) Turner syndrome and meningioma: support for a possible increased risk of neoplasia in Turner syndrome. Eur J Med Genet 57(6):269–274

    Article  PubMed  Google Scholar 

  18. Schoemaker MJ et al (2008) Cancer incidence in women with Turner syndrome in Great Britain: a national cohort study. Lancet Oncol 9(3):239–246

    Article  PubMed  Google Scholar 

  19. Claus EB et al (2011) Family and personal medical history and risk of meningioma: clinical article. J Neurosurg 115(6):1072–1077

    Article  PubMed  PubMed Central  Google Scholar 

  20. Portet S et al (2019) Histomolecular characterization of intracranial meningiomas developed in patients exposed to high-dose cyproterone acetate: an antiandrogen treatment. Neuro-Oncol Adv. https://doi.org/10.1093/noajnl/vdz003

    Article  Google Scholar 

  21. Passeri T et al (2022) Atypical evolution of meningiomatosis after discontinuation of cyproterone acetate: clinical cases and histomolecular characterization. Acta Neurochir 164(1):255–263

    Article  PubMed  Google Scholar 

  22. Dresser L et al (2020) Estrogen hormone replacement therapy in incidental intracranial meningioma: a growth-rate analysis. Sci Rep 10(1):1–7

    Article  Google Scholar 

  23. FDA (2021) FDA listing of established pharmacologic class text phrases October 2021. https://www.fda.gov/media/156478/download

  24. Carroll RS, Zhang J, Black PM (1999) Expression of estrogen receptors alpha and beta in human meningiomas. J Neuro-Oncol 42(2):109–116

    Article  CAS  Google Scholar 

  25. Martinkovich S et al (2014) Selective estrogen receptor modulators: tissue specificity and clinical utility. Clin Interv Aging 9:1437

    PubMed  PubMed Central  Google Scholar 

  26. Andersson S et al (2017) Insufficient antibody validation challenges oestrogen receptor beta research. Nat Commun 8(1):1–14

    Google Scholar 

  27. Revankar CM et al (2005) A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 307(5715):1625–1630

    Article  CAS  PubMed  Google Scholar 

  28. Prossnitz ER, Arterburn JB (2015) International union of basic and clinical pharmacology. XCVII. G protein-coupled estrogen receptor and its pharmacologic modulators. Pharmacol Rev 67(3):505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van Leeuwen FE et al (1994) Risk of endometrial cancer after tamoxifen treatment of breast cancer. Lancet 343(8895):448–452

    Article  PubMed  Google Scholar 

  30. Hua L et al (2017) Prognostic value of estrogen receptor in WHO Grade III meningioma: a long-term follow-up study from a single institution. J Neurosurg 128(6):1698–1706

    Article  PubMed  Google Scholar 

  31. Pravdenkova S et al (2006) Progesterone and estrogen receptors: opposing prognostic indicators in meningiomas. J Neurosurg 105(2):163–173

    Article  CAS  PubMed  Google Scholar 

  32. Claus EB et al (2008) Specific genes expressed in association with progesterone receptors in meningioma. Can Res 68(1):314–322

    Article  CAS  Google Scholar 

  33. Korhonen K et al (2006) Female predominance in meningiomas can not be explained by differences in progesterone, estrogen, or androgen receptor expression. J Neuro-Oncol 80(1):1–7

    Article  CAS  Google Scholar 

  34. Li Q et al (2013) Emerging association between androgen deprivation therapy and male meningioma: significant expression of luteinizing hormone-releasing hormone receptor in male meningioma. Prostate Cancer Prostatic Dis 16(4):387–390

    Article  PubMed  Google Scholar 

  35. Lee KL, Terris MK (2003) Luteinizing hormone-releasing hormone agonists and meningioma: a treatment dilemma. Urology 62(2):351

    PubMed  Google Scholar 

  36. Leung K-C et al (2004) Estrogen regulation of growth hormone action. Endocr Rev 25(5):693–721

    Article  CAS  PubMed  Google Scholar 

  37. Kumar U et al (2005) Somatostatin receptors in primary human breast cancer: quantitative analysis of mRNA for subtypes 1–5 and correlation with receptor protein expression and tumor pathology. Breast Cancer Res Treat 92(2):175–186

    Article  CAS  PubMed  Google Scholar 

  38. Rossi V et al (2019) Estrogens modulate somatostatin receptors expression and synergize with the somatostatin analog pasireotide in prostate cells. Front Pharmacol 10:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rutkowski R et al (2016) Correlation of leptin receptor expression with BMI in differential grades of human meningiomas. Oncol Lett 11(4):2515–2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rogol AD (2010) Sex steroids, growth hormone, leptin and the pubertal growth spurt. Pediatr Neuroendocrinol 17:77–85

    Article  CAS  Google Scholar 

  41. Di Carlo C, Tommaselli GA, Nappi C (2002) Effects of sex steroid hormones and menopause on serum leptin concentrations. Gynecol Endocrinol 16(6):479–491

    Article  PubMed  Google Scholar 

  42. Ji Y et al (2015) Double-blind phase III randomized trial of the antiprogestin agent mifepristone in the treatment of unresectable meningioma: SWOG S9005. J Clin Oncol 33(34):4093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jay JR et al (1985) Modulation of meningioma cell growth by sex steroid hormones in vitro. J Neurosurg 62(5):757–762

    Article  CAS  PubMed  Google Scholar 

  44. Olson JJ et al (1986) Hormonal manipulation of meningiomas in vitro. J Neurosurg 65(1):99–107

    Article  CAS  PubMed  Google Scholar 

  45. Ji J, Sundquist J, Sundquist K (2016) Association of tamoxifen with meningioma: a population-based study in Sweden. Eur J Cancer Prev 25(1):29

    Article  CAS  PubMed  Google Scholar 

  46. Sun L-M et al (2019) Long-term use of tamoxifen is associated with a decreased subsequent meningioma risk in patients with breast cancer: a nationwide population-based cohort study. Front Pharmacol 10:674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Markwalder T-M, Seiler RW, Zava DT (1985) Antiestrogenic therapy of meningiomas—a pilot study. Surg Neurol 24(3):245–249

    Article  CAS  PubMed  Google Scholar 

  48. Goodwin JW et al (1993) A phase II evaluation of tamoxifen in unresectable or refractory meningiomas: a Southwest Oncology Group study. J Neuro-Oncol 15(1):75–77

    Article  CAS  Google Scholar 

  49. Schindler AE et al (2008) Reprint of classification and pharmacology of progestins. Maturitas 61(1):171–180

    Article  PubMed  Google Scholar 

  50. Grunberg SM, Weiss MH (1990) Lack of efficacy of megestrol acetate in the treatment of unresectable meningioma. J Neuro-Oncol 8(1):61–65

    Article  CAS  Google Scholar 

  51. Grunberg SM et al (2006) Long-term administration of mifepristone (RU486): clinical tolerance during extended treatment of meningioma. Cancer Investig 24(8):727–733

    Article  CAS  Google Scholar 

  52. Touat M et al (2014) Successful treatment of multiple intracranial meningiomas with the antiprogesterone receptor agent mifepristone (RU486). Acta Neurochir 156(10):1831–1835

    Article  PubMed  Google Scholar 

  53. Sitruk-Ware R, Spitz IM (2003) Pharmacological properties of mifepristone: toxicology and safety in animal and human studies. Contraception 68(6):409–420

    Article  CAS  PubMed  Google Scholar 

  54. Matsuda Y et al (1994) Antitumor effects of antiprogesterones on human meningioma cells in vitro and in vivo: case report. J Neurosurg 80(3):527–534

    Article  CAS  PubMed  Google Scholar 

  55. Chamberlain MC (2016) What lessons are imparted from SWOG S9005 for recurrent meningioma? J Clin Oncol 34(15):1825–1826

    Article  PubMed  Google Scholar 

  56. Chamberlain MC, Glantz MJ, Fadul CE (2007) Recurrent meningioma: salvage therapy with long-acting somatostatin analogue. Neurology 69(10):969–973

    Article  CAS  PubMed  Google Scholar 

  57. Norden AD et al (2015) Phase II study of monthly pasireotide LAR (SOM230C) for recurrent or progressive meningioma. Neurology 84(3):280–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hrachova M et al (2020) A retrospective interventional cohort study to assess the safety and efficacy of sandostatin LAR for treatment of recurrent and/or refractory meningiomas. Front Neurol. https://doi.org/10.3389/fneur.2020.00373

    Article  PubMed  PubMed Central  Google Scholar 

  59. Arena S et al (2004) Expression of somatostatin receptor mRNA in human meningiomas and their implication in in vitro antiproliferative activity. J Neuro-Oncol 66(1):155–166

    Article  Google Scholar 

  60. Jensen LR et al (2022) Somatostatin analogues in treatment-refractory meningioma: a systematic review with meta-analysis of individual patient data. Neurosurg Rev 45(5):3067–3081

    Article  PubMed  Google Scholar 

  61. Graillon T et al (2015) Combined treatment by octreotide and everolimus: octreotide enhances inhibitory effect of everolimus in aggressive meningiomas. J Neuro-Oncol 124(1):33–43

    Article  CAS  Google Scholar 

  62. Cardona AF et al (2019) Systemic management of malignant meningiomas: a comparative survival and molecular marker analysis between octreotide in combination with everolimus and sunitinib. PLoS ONE 14(6):e0217340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Graillon T et al (2020) Everolimus and octreotide for patients with recurrent meningioma: results from the phase II CEVOREM trial. Clin Cancer Res 26(3):552–557

    Article  CAS  PubMed  Google Scholar 

  64. Mirian C et al (2021) Somatostatin receptor-targeted radiopeptide therapy in treatment-refractory meningioma: individual patient data meta-analysis. J Nucl Med 62(4):507

    Article  CAS  PubMed  Google Scholar 

  65. Millward CP et al (2022) Development of ‘Core Outcome Sets’ for Meningioma in Clinical Studies (The COSMIC Project): protocol for two systematic literature reviews, eDelphi surveys and online consensus meetings. BMJ Open 12(5):e057384

    Article  PubMed  PubMed Central  Google Scholar 

  66. Choudhury A, Raleigh DR (2020) Chapter 8—preclinical models of meningioma: cell culture and animal systems. In: McDermott MW (ed) Handbook of clinical neurology. Elsevier, Amsterdam, pp 131–136

    Google Scholar 

  67. Moresco RM et al (1997) Oestrogen receptors in meningiomas: a correlative PET and immunohistochemical study. Nucl Med Commun 18(7):606–615

    Article  CAS  PubMed  Google Scholar 

  68. Dehdashti F et al (2021) Association of PET-based estradiol-challenge test for breast cancer progesterone receptors with response to endocrine therapy. Nat Commun 12(1):733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Boers J et al (2021) Serial [(18)F]-FDHT-PET to predict bicalutamide efficacy in patients with androgen receptor positive metastatic breast cancer. Eur J Cancer 144:151–161

    Article  CAS  PubMed  Google Scholar 

  70. Brastianos PK et al (2022) Phase 2 study of pembrolizumab in patients with recurrent and residual high-grade meningiomas. Nat Commun 13(1):1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Gregory M. Kiez and Mehmet Kutman Foundation, Connecticut Brain Tumor Alliance, and Yale School of Medicine funds, NIH/NCI (No.F31CA254426) & NIH-Medical Scientist Training Program (No.T32GM007205) R01 Grants CA109468, CA109461, CA109745, CA109473, CA052689, and CA151933.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was done by DFM, EC and MG. with critical feedback from JM. Manuscript was written by DFM with feedback from JM, EC, and MG. Supervision of the manuscript was done by EC and MG.

Corresponding authors

Correspondence to Elizabeth Claus M.D., Ph.D. or Murat Günel M.D..

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyagishima, D.F., Moliterno, J., Claus, E. et al. Hormone therapies in meningioma-where are we?. J Neurooncol 161, 297–308 (2023). https://doi.org/10.1007/s11060-022-04187-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-022-04187-1

Keywords

Navigation