Skip to main content

Advertisement

Log in

Ventricular opening and cerebrospinal fluid circulation accelerate the biodegradation process of carmustine wafers suggesting their immunomodulation potential in the human brain

  • Research
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Opening the ventricular system during glioblastoma surgery is often necessary, but the consequent effect on the tumor microenvironment of glioblastoma remains unknown. Implantation of carmustine wafer enables direct drug delivery to the tumor site; however, the exact mechanism of the wafer’s biodegradation process is unclear, and the available data is limited to in vivo non-human mammalian studies. We hypothesized that the ventricular opening affects the degradation process of the wafer and the glioblastoma tumor microenvironment.

Methods

This study included 30 glioblastoma patients. 21 patients underwent carmustine wafer implantation during initial surgery. All patients underwent repeated surgical resection upon recurrence, allowing for pathological comparison of changes associated with wafer implantation. Immunohistochemical analyses were performed using CD68, TMEM119, CD163, IBA1, BIN1, and CD31 antibodies to highlight microglia, macrophages, and tumor vascularity, and the quantitative scoring results were correlated with clinical, molecular, and surgical variables, including the effect of the ventricular opening.

Results

The carmustine wafer implanted group presented significantly less TMEM119-positive microglia within the tumor (P = 0.0002). Simple and multiple regression analyses revealed that the decrease in TMEM119-positive microglia was correlated with longer intervals between surgeries and opened ventricular systems. No correlation was observed between age, methylated O6-methylguanine DNA methyltransferase promoter expression, and the extent of surgical resection.

Conclusions

Our study findings strongly suggest that biomaterials may possess immunomodulation capacity, which is significantly impacted by the ventricular opening procedure. Furthermore, our data highlights the pathophysiological effects of the ventricular opening within the surrounding human brain, especially after the wafer implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lun MP, Monuki ES, Lehtinen MK (2015) Development and functions of the choroid plexus-cerebrospinal fluid system. Nat Rev Neurosci 16:445–457. https://doi.org/10.1038/nrn3921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shibahara I, Sonoda Y, Saito R, Kanamori M, Yamashita Y, Kumabe T, Watanabe M, Suzuki H, Watanabe T, Ishioka C, Tominaga T (2013) The expression status of CD133 is associated with the pattern and timing of primary glioblastoma recurrence. Neuro Oncol 15:1151–1159. https://doi.org/10.1093/neuonc/not066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Young JS, Gogos AJ, Pereira MP, Morshed RA, Li J, Barkovich MJ, Hervey-Jumper SL, Berger MS (2021) Effects of ventricular entry on patient outcome during glioblastoma resection. J Neurosurg. https://doi.org/10.3171/2020.7.JNS201362

    Article  PubMed  Google Scholar 

  4. Mistry AM, Kelly PD, Gallant JN, Mummareddy N, Mobley BC, Thompson RC, Chambless LB (2019) Comparative analysis of subventricular zone glioblastoma contact and ventricular entry during resection in predicting dissemination, hydrocephalus, and survival. Neurosurgery 85:E924–E932. https://doi.org/10.1093/neuros/nyz144

    Article  PubMed  PubMed Central  Google Scholar 

  5. John JK, Robin AM, Pabaney AH, Rammo RA, Schultz LR, Sadry NS, Lee IY (2017) Complications of ventricular entry during craniotomy for brain tumor resection. J Neurosurg 127:426–432. https://doi.org/10.3171/2016.7.JNS16340

    Article  PubMed  Google Scholar 

  6. Mistry AM, Kelly PD, Thompson RC, Chambless LB (2018) Cancer dissemination, hydrocephalus, and survival after cerebral ventricular entry during high-grade glioma surgery: a meta-analysis. Neurosurgery 83:1119–1127. https://doi.org/10.1093/neuros/nyy202

    Article  PubMed  Google Scholar 

  7. Tamargo RJ, Epstein JI, Reinhard CS, Chasin M, Brem H (1989) Brain biocompatibility of a biodegradable, controlled-release polymer in rats. J Biomed Mater Res 23:253–266. https://doi.org/10.1002/jbm.820230209

    Article  CAS  PubMed  Google Scholar 

  8. Kleinberg L (2012) Polifeprosan 20, 3.85% carmustine slow-release wafer in malignant glioma: evidence for role in era of standard adjuvant temozolomide. Core Evid 7:115–130. https://doi.org/10.2147/CE.S23244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kumar N, Langer RS, Domb AJ (2002) Polyanhydrides: an overview. Adv Drug Deliv Rev 54:889–910. https://doi.org/10.1016/s0169-409x(02)00050-9

    Article  CAS  PubMed  Google Scholar 

  10. Basu A, Domb AJ (2018) Recent advances in polyanhydride based biomaterials. Adv Mater 30:e1706815. https://doi.org/10.1002/adma.201706815

    Article  CAS  PubMed  Google Scholar 

  11. Domb AJ, Rock M, Perkin C, Yipchuck G, Broxup B, Villemure JG (1995) Excretion of a radiolabelled anticancer biodegradable polymeric implant from the rabbit brain. Biomaterials 16:1069–1072. https://doi.org/10.1016/0142-9612(95)98902-q

    Article  CAS  PubMed  Google Scholar 

  12. Domb AJ, Rock M, Schwartz J, Perkin C, Yipchuk G, Broxup B, Villemure JG (1994) Metabolic disposition and elimination studies of a radiolabelled biodegradable polymeric implant in the rat brain. Biomaterials 15:681–688

    Article  CAS  Google Scholar 

  13. Wu MP, Tamada JA, Brem H, Langer R (1994) In vivo versus in vitro degradation of controlled release polymers for intracranial surgical therapy. J Biomed Mater Res 28:387–395. https://doi.org/10.1002/jbm.820280314

    Article  CAS  PubMed  Google Scholar 

  14. Shibahara I, Hanihara M, Watanabe T, Dan M, Sato S, Kuroda H, Inamura A, Inukai M, Hara A, Yasui Y, Kumabe T (2018) Tumor microenvironment after biodegradable BCNU wafer implantation: special consideration of immune system. J Neurooncol 137:417–427. https://doi.org/10.1007/s11060-017-2733-0

    Article  CAS  PubMed  Google Scholar 

  15. Brem H, Ewend MG, Piantadosi S, Greenhoot J, Burger PC, Sisti M (1995) The safety of interstitial chemotherapy with BCNU-loaded polymer followed by radiation therapy in the treatment of newly diagnosed malignant gliomas: phase I trial. J Neurooncol 26:111–123

    Article  CAS  Google Scholar 

  16. Komohara Y, Ohnishi K, Kuratsu J, Takeya M (2008) Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol 216:15–24. https://doi.org/10.1002/path.2370

    Article  CAS  PubMed  Google Scholar 

  17. Hambardzumyan D, Gutmann DH, Kettenmann H (2016) The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci 19:20–27. https://doi.org/10.1038/nn.4185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takeya M, Komohara Y (2016) Role of tumor-associated macrophages in human malignancies: friend or foe? Pathol Int 66:491–505. https://doi.org/10.1111/pin.12440

    Article  PubMed  Google Scholar 

  19. Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB, Mulinyawe SB, Bohlen CJ, Adil A, Tucker A, Weissman IL, Chang EF, Li G, Grant GA, Hayden Gephart MG, Barres BA (2016) New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci USA 113:E1738-1746. https://doi.org/10.1073/pnas.1525528113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP, Initiative S (2007) The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370:1453–1457. https://doi.org/10.1016/S0140-6736(07)61602-X

    Article  Google Scholar 

  21. Cui X, Wang Q, Zhou J, Wang Y, Xu C, Tong F, Wang H, Kang C (2021) Single-cell transcriptomics of glioblastoma reveals a unique tumor microenvironment and potential immunotherapeutic target against tumor-associated macrophage. Front Oncol 11:710695. https://doi.org/10.3389/fonc.2021.710695

    Article  PubMed  PubMed Central  Google Scholar 

  22. Woolf Z, Swanson MEV, Smyth LC, Mee EW, Schweder P, Heppner P, Kim BJH, Turner C, Oldfield RL, Curtis MA, Faull RLM, Scotter EL, Park TI, Dragunow M (2021) Single-cell image analysis reveals a protective role for microglia in glioblastoma. Neurooncol Adv 3:vdab031. https://doi.org/10.1093/noajnl/vdab031

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zeiner PS, Preusse C, Golebiewska A, Zinke J, Iriondo A, Muller A, Kaoma T, Filipski K, Muller-Eschner M, Bernatz S, Blank AE, Baumgarten P, Ilina E, Grote A, Hansmann ML, Verhoff MA, Franz K, Feuerhake F, Steinbach JP, Wischhusen J, Stenzel W, Niclou SP, Harter PN, Mittelbronn M (2019) Distribution and prognostic impact of microglia/macrophage subpopulations in gliomas. Brain Pathol 29:513–529. https://doi.org/10.1111/bpa.12690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sorensen MD, Dahlrot RH, Boldt HB, Hansen S, Kristensen BW (2018) Tumour-associated microglia/macrophages predict poor prognosis in high-grade gliomas and correlate with an aggressive tumour subtype. Neuropathol Appl Neurobiol 44:185–206. https://doi.org/10.1111/nan.12428

    Article  CAS  PubMed  Google Scholar 

  25. Satoh J, Kino Y, Asahina N, Takitani M, Miyoshi J, Ishida T, Saito Y (2016) TMEM119 marks a subset of microglia in the human brain. Neuropathology 36:39–49. https://doi.org/10.1111/neup.12235

    Article  CAS  PubMed  Google Scholar 

  26. Muller S, Kohanbash G, Liu SJ, Alvarado B, Carrera D, Bhaduri A, Watchmaker PB, Yagnik G, Di Lullo E, Malatesta M, Amankulor NM, Kriegstein AR, Lim DA, Aghi M, Okada H, Diaz A (2017) Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment. Genome Biol 18:234. https://doi.org/10.1186/s13059-017-1362-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Han S, Zhang C, Li Q, Dong J, Liu Y, Huang Y, Jiang T, Wu A (2014) Tumour-infiltrating CD4(+) and CD8(+) lymphocytes as predictors of clinical outcome in glioma. Br J Cancer 110:2560–2568. https://doi.org/10.1038/bjc.2014.162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth AA, Frosina D, Gnjatic S, Ambrosone C, Kepner J, Odunsi T, Ritter G, Lele S, Chen YT, Ohtani H, Old LJ, Odunsi K (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102:18538–18543. https://doi.org/10.1073/pnas.0509182102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Berghoff AS, Kiesel B, Widhalm G, Rajky O, Ricken G, Wohrer A, Dieckmann K, Filipits M, Brandstetter A, Weller M, Kurscheid S, Hegi ME, Zielinski CC, Marosi C, Hainfellner JA, Preusser M, Wick W (2015) Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol 17:1064–1075. https://doi.org/10.1093/neuonc/nou307

    Article  CAS  PubMed  Google Scholar 

  30. Shibahara I, Miyasaka K, Sekiguchi A, Ishiyama H, Inukai M, Yasui Y, Watanabe T, Sato S, Hide T, Kumabe T (2021) Long-term follow-up after BCNU wafer implantation in patients with newly diagnosed glioblastoma. J Clin Neurosci 86:202–210. https://doi.org/10.1016/j.jocn.2021.01.037

    Article  CAS  PubMed  Google Scholar 

  31. Sonoda Y, Yokosawa M, Saito R, Kanamori M, Yamashita Y, Kumabe T, Watanabe M, Tominaga T (2010) O(6)-Methylguanine DNA methyltransferase determined by promoter hypermethylation and immunohistochemical expression is correlated with progression-free survival in patients with glioblastoma. Int J Clin Oncol 15:352–358. https://doi.org/10.1007/s10147-010-0065-6

    Article  CAS  PubMed  Google Scholar 

  32. Kalinski T, Krueger S, Sel S, Werner K, Ropke M, Roessner A (2006) Differential expression of VEGF-A and angiopoietins in cartilage tumors and regulation by interleukin-1beta. Cancer 106:2028–2038. https://doi.org/10.1002/cncr.21848

    Article  CAS  PubMed  Google Scholar 

  33. Hai J, Li ST, Lin Q, Pan QG, Gao F, Ding MX (2003) Vascular endothelial growth factor expression and angiogenesis induced by chronic cerebral hypoperfusion in rat brain. Neurosurgery 53:963–970. https://doi.org/10.1227/01.neu.0000083594.10117.7a (discussion 970–962)

    Article  PubMed  Google Scholar 

  34. Bankhead P, Loughrey MB, Fernandez JA, Dombrowski Y, McArt DG, Dunne PD, McQuaid S, Gray RT, Murray LJ, Coleman HG, James JA, Salto-Tellez M, Hamilton PW (2017) QuPath: open source software for digital pathology image analysis. Sci Rep 7:16878. https://doi.org/10.1038/s41598-017-17204-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Prosniak M, Harshyne LA, Andrews DW, Kenyon LC, Bedelbaeva K, Apanasovich TV, Heber-Katz E, Curtis MT, Cotzia P, Hooper DC (2013) Glioma grade is associated with the accumulation and activity of cells bearing M2 monocyte markers. Clin Cancer Res 19:3776–3786. https://doi.org/10.1158/1078-0432.CCR-12-1940

    Article  CAS  PubMed  Google Scholar 

  36. Jang BS, Kim IA (2022) Relationship between macrophage and radiosensitivity in human primary and recurrent glioblastoma. In silico analysis with publicly available datasets. Biomedicines. https://doi.org/10.3390/biomedicines10020292

    Article  PubMed  PubMed Central  Google Scholar 

  37. Klopfleisch R, Jung F (2017) The pathology of the foreign body reaction against biomaterials. J Biomed Mater Res A 105:927–940. https://doi.org/10.1002/jbm.a.35958

    Article  CAS  PubMed  Google Scholar 

  38. Fayzullin A, Bakulina A, Mikaelyan K, Shekhter A, Guller A (2021) Implantable drug delivery systems and foreign body reaction: traversing the current clinical landscape. Bioengineering. https://doi.org/10.3390/bioengineering8120205

    Article  PubMed  PubMed Central  Google Scholar 

  39. Klinge U, Dievernich A, Tolba R, Klosterhalfen B, Davies L (2020) CD68+ macrophages as crucial components of the foreign body reaction demonstrate an unconventional pattern of functional markers quantified by analysis with double fluorescence staining. J Biomed Mater Res B 108:3134–3146. https://doi.org/10.1002/jbm.b.34639

    Article  CAS  Google Scholar 

  40. Bohnert S, Seiffert A, Trella S, Bohnert M, Distel L, Ondruschka B, Monoranu CM (2020) TMEM119 as a specific marker of microglia reaction in traumatic brain injury in postmortem examination. Int J Legal Med 134:2167–2176. https://doi.org/10.1007/s00414-020-02384-z

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shtaya A, Bridges LR, Williams R, Trippier S, Zhang L, Pereira AC, Nicoll JAR, Boche D, Hainsworth AH (2021) Innate immune anti-inflammatory response in human spontaneous intracerebral hemorrhage. Stroke. https://doi.org/10.1161/STROKEAHA.121.034673

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sonoda Y, Shibahara I, Matsuda KI, Saito R, Kawataki T, Oda M, Sato Y, Sadahiro H, Nomura S, Sasajima T, Beppu T, Kanamori M, Sakurada K, Kumabe T, Tominaga T, Kinouchi H, Shimizu H, Ogasawara K, Suzuki M (2017) Opening the ventricle during surgery diminishes survival among patients with newly diagnosed glioblastoma treated with carmustine wafers: a multi-center retrospective study. J Neurooncol 134:83–88. https://doi.org/10.1007/s11060-017-2488-7

    Article  PubMed  Google Scholar 

  43. Klein SL, Flanagan KL (2016) Sex differences in immune responses. Nat Rev Immunol 16:626–638. https://doi.org/10.1038/nri.2016.90

    Article  CAS  PubMed  Google Scholar 

  44. Chen YF, Wang K, Zhang YZ, Zheng YF, Hu FL (2016) In vitro anti-inflammatory effects of three fatty acids from royal jelly. Mediat Inflamm 2016:3583684. https://doi.org/10.1155/2016/3583684

    Article  CAS  Google Scholar 

  45. Giese A, Kucinski T, Knopp U, Goldbrunner R, Hamel W, Mehdorn HM, Tonn JC, Hilt D, Westphal M (2004) Pattern of recurrence following local chemotherapy with biodegradable carmustine (BCNU) implants in patients with glioblastoma. J Neurooncol 66:351–360

    Article  Google Scholar 

  46. Leong KW, D’Amore PD, Marletta M, Langer R (1986) Bioerodible polyanhydrides as drug-carrier matrices. II. Biocompatibility and chemical reactivity. J Biomed Mater Res 20:51–64. https://doi.org/10.1002/jbm.820200106

    Article  CAS  PubMed  Google Scholar 

  47. Brem H, Tamargo RJ, Olivi A, Pinn M, Weingart JD, Wharam M, Epstein JI (1994) Biodegradable polymers for controlled delivery of chemotherapy with and without radiation therapy in the monkey brain. J Neurosurg 80:283–290. https://doi.org/10.3171/jns.1994.80.2.0283

    Article  CAS  PubMed  Google Scholar 

  48. Dang W, Daviau T, Brem H (1996) Morphological characterization of polyanhydride biodegradable implant gliadel during in vitro and in vivo erosion using scanning electron microscopy. Pharm Res 13:683–691

    Article  CAS  Google Scholar 

  49. Grossman SA, Reinhard C, Colvin OM, Chasin M, Brundrett R, Tamargo RJ, Brem H (1992) The intracerebral distribution of BCNU delivered by surgically implanted biodegradable polymers. J Neurosurg 76:640–647. https://doi.org/10.3171/jns.1992.76.4.0640

    Article  CAS  PubMed  Google Scholar 

  50. Pallud J, Audureau E, Noel G, Corns R, Lechapt-Zalcman E, Duntze J, Pavlov V, Guyotat J, Hieu PD, Le Reste PJ, Faillot T, Litre CF, Desse N, Petit A, Emery E, Voirin J, Peltier J, Caire F, Vignes JR, Barat JL, Langlois O, Dezamis E, Parraga E, Zanello M, Nader E, Lefranc M, Bauchet L, Devaux B, Menei P, Metellus P, Club de Neuro-Oncologie of the Societe Francaise de N (2015) Long-term results of carmustine wafer implantation for newly diagnosed glioblastomas: a controlled propensity-matched analysis of a French multicenter cohort. Neuro Oncol 17:1609–1619. https://doi.org/10.1093/neuonc/nov126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Attenello FJ, Mukherjee D, Datoo G, McGirt MJ, Bohan E, Weingart JD, Olivi A, Quinones-Hinojosa A, Brem H (2008) Use of Gliadel (BCNU) wafer in the surgical treatment of malignant glioma: a 10-year institutional experience. Ann Surg Oncol 15:2887–2893. https://doi.org/10.1245/s10434-008-0048-2

    Article  PubMed  Google Scholar 

  52. Menei P, Metellus P, Parot-Schinkel E, Loiseau H, Capelle L, Jacquet G, Guyotat J, Neuro-oncology Club of the French Society of N (2010) Biodegradable carmustine wafers (Gliadel) alone or in combination with chemoradiotherapy: the French experience. Ann Surg Oncol 17:1740–1746. https://doi.org/10.1245/s10434-010-1081-5

    Article  PubMed  Google Scholar 

  53. Westphal M, Hilt DC, Bortey E, Delavault P, Olivares R, Warnke PC, Whittle IR, Jaaskelainen J, Ram Z (2003) A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncol 5:79–88. https://doi.org/10.1215/S1522-8517-02-00023-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Aoki T, Nishikawa R, Sugiyama K, Nonoguchi N, Kawabata N, Mishima K, Adachi J, Kurisu K, Yamasaki F, Tominaga T, Kumabe T, Ueki K, Higuchi F, Yamamoto T, Ishikawa E, Takeshima H, Yamashita S, Arita K, Hirano H, Yamada S, Matsutani M, group NPCs (2014) A multicenter phase I/II study of the BCNU implant (Gliadel((R)) Wafer) for Japanese patients with malignant gliomas. Neurol Med Chir (Tokyo) 54:290–301

    Article  Google Scholar 

  55. Brem H, Piantadosi S, Burger PC, Walker M, Selker R, Vick NA, Black K, Sisti M, Brem S, Mohr G et al (1995) Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-brain Tumor Treatment Group. Lancet 345:1008–1012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We express our heartfelt sorrow for the passing of Ms. Yoshie Yasui. We dedicate this manuscript to her. We would like to thank Editage (www.editage.com) for reviewing the language and proofreading the manuscript carefully.

Funding

This work was supported in part by the Japan Society for the Promotion of Science (JSPS) KAKENHI for Early-Career Scientists, Grant Number 18K16569, a Research Grant for young medical doctors and healthcare professionals from SRL, Inc., and grants from the Ichiro Kanehara Foundation, the YOKOYAMA Foundation for Clinical Pharmacology, the Akaeda Igaku Kenkyu Foundation, the Uehara Memorial Foundation, the Japan Brain Foundation, and the Takeda Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Conception and study design: IS, TK. Data acquisition: IS, YS, HH, HH, MI, TH, YY. Data analysis: IS, TW, YO. Manuscript drafting: IS, YS, TK. Manuscript revising: IS, YS, TK. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ichiyo Shibahara.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest concerning the materials or methods used in this study or the findings specified in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibahara, I., Shibahara, Y., Hagiwara, H. et al. Ventricular opening and cerebrospinal fluid circulation accelerate the biodegradation process of carmustine wafers suggesting their immunomodulation potential in the human brain. J Neurooncol 159, 425–435 (2022). https://doi.org/10.1007/s11060-022-04078-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-022-04078-5

Keywords

Navigation