Skip to main content

Machine learning in neuro-oncology: toward novel development fields

Abstract

Purpose

Artificial Intelligence (AI) involves several and different techniques able to elaborate a large amount of data responding to a specific planned outcome. There are several possible applications of this technology in neuro-oncology.

Methods

We reviewed, according to PRISMA guidelines, available studies adopting AI in different fields of neuro-oncology including neuro-radiology, pathology, surgery, radiation therapy, and systemic treatments.

Results

Neuro-radiology presented the major number of studies assessing AI. However, this technology is being successfully tested also in other operative settings including surgery and radiation therapy. In this context, AI shows to significantly reduce resources and costs maintaining an elevated qualitative standard. Pathological diagnosis and development of novel systemic treatments are other two fields in which AI showed promising preliminary data.

Conclusion

It is likely that AI will be quickly included in some aspects of daily clinical practice. Possible applications of these techniques are impressive and cover all aspects of neuro-oncology.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

Not applicable.

References

  1. Miller KD, Ostrom QT, Kruchko C, Patil N, Tihan T, Cioffi G, Fuchs HE, Waite KA, Jemal A, Siegel RL (2021) Barnholtz-Sloan JS (2021) Brain and other central nervous system tumor statistics. CA Cancer J Clin 71(5):381–406. https://doi.org/10.3322/caac.21693

    Article  PubMed  Google Scholar 

  2. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, Soffietti R, von Deimling A, Ellison DW (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23(8):1231–1251. https://doi.org/10.1093/neuonc/noab106

    CAS  Article  PubMed  Google Scholar 

  3. Ibrahim A, Gamble P, Jaroensri R, Abdelsamea MM, Mermel CH, Chen PC, Rakha EA (2020) Artificial intelligence in digital breast pathology: techniques and applications. Breast 49:267–273. https://doi.org/10.1016/j.breast.2019.12.007

    Article  PubMed  Google Scholar 

  4. Baştanlar Y, Ozuysal M (2014) Introduction to machine learning. Methods Mol Biol 1107:105–128. https://doi.org/10.1007/978-1-62703-748-8_7

    Article  PubMed  Google Scholar 

  5. Deo RC (2015) Machine learning in medicine. Circulation 132(20):1920–1930. https://doi.org/10.1161/circulationaha.115.001593

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dora L, Agrawal S, Panda R, Abraham A (2017) State-of-the-art methods for brain tissue segmentation: a review. IEEE Rev Biomed Eng 10:235–249. https://doi.org/10.1109/rbme.2017.2715350

    Article  PubMed  Google Scholar 

  7. Hassabis D, Kumaran D, Summerfield C, Botvinick M (2017) Neuroscience-inspired artificial intelligence. Neuron 95(2):245–258. https://doi.org/10.1016/j.neuron.2017.06.011

    CAS  Article  PubMed  Google Scholar 

  8. Zaharchuk G, Gong E, Wintermark M, Rubin D, Langlotz CP (2018) Deep learning in neuroradiology. AJNR Am J Neuroradiol 39(10):1776–1784. https://doi.org/10.3174/ajnr.A5543

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Akbari H, Bakas S, Pisapia JM, Nasrallah MP, Rozycki M, Martinez-Lage M, Morrissette JJD, Dahmane N, O’Rourke DM, Davatzikos C (2018) In vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signature. Neuro Oncol 20(8):1068–1079. https://doi.org/10.1093/neuonc/noy033

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Chang P, Grinband J, Weinberg BD, Bardis M, Khy M, Cadena G, Su MY, Cha S, Filippi CG, Bota D, Baldi P, Poisson LM, Jain R, Chow D (2018) Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. AJNR Am J Neuroradiol 39(7):1201–1207. https://doi.org/10.3174/ajnr.A5667

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Choi YS, Bae S, Chang JH, Kang SG, Kim SH, Kim J, Rim TH, Choi SH, Jain R, Lee SK (2021) Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics. Neuro Oncol 23(2):304–313. https://doi.org/10.1093/neuonc/noaa177

    CAS  Article  PubMed  Google Scholar 

  12. Gates EDH, Lin JS, Weinberg JS, Prabhu SS, Hamilton J, Hazle JD, Fuller GN, Baladandayuthapani V, Fuentes DT, Schellingerhout D (2020) Imaging-based algorithm for the local grading of glioma. AJNR Am J Neuroradiol 41(3):400–407. https://doi.org/10.3174/ajnr.A6405

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Grist JT, Withey S, Bennett C, Rose HEL, MacPherson L, Oates A, Powell S, Novak J, Abernethy L, Pizer B, Bailey S, Clifford SC, Mitra D, Arvanitis TN, Auer DP, Avula S, Grundy R, Peet AC (2021) Combining multi-site magnetic resonance imaging with machine learning predicts survival in pediatric brain tumors. Sci Rep 11(1):18897. https://doi.org/10.1038/s41598-021-96189-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Iv M, Zhou M, Shpanskaya K, Perreault S, Wang Z, Tranvinh E, Lanzman B, Vajapeyam S, Vitanza NA, Fisher PG, Cho YJ, Laughlin S, Ramaswamy V, Taylor MD, Cheshier SH, Grant GA, Young Poussaint T, Gevaert O, Yeom KW (2019) MR imaging-based radiomic signatures of distinct molecular subgroups of medulloblastoma. AJNR Am J Neuroradiol 40(1):154–161. https://doi.org/10.3174/ajnr.A5899

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Jayachandran Preetha C, Meredig H, Brugnara G, Mahmutoglu MA, Foltyn M, Isensee F, Kessler T, Pflüger I, Schell M, Neuberger U, Petersen J, Wick A, Heiland S, Debus J, Platten M, Idbaih A, Brandes AA, Winkler F, van den Bent MJ, Nabors B, Stupp R, Maier-Hein KH, Gorlia T, Tonn JC, Weller M, Wick W, Bendszus M, Vollmuth P (2021) Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study. Lancet Digit Health 3(12):e784–e794. https://doi.org/10.1016/s2589-7500(21)00205-3

    Article  PubMed  Google Scholar 

  16. Kickingereder P, Bonekamp D, Nowosielski M, Kratz A, Sill M, Burth S, Wick A, Eidel O, Schlemmer HP, Radbruch A, Debus J, Herold-Mende C, Unterberg A, Jones D, Pfister S, Wick W, von Deimling A, Bendszus M, Capper D (2016) Radiogenomics of glioblastoma: machine learning-based classification of molecular characteristics by using multiparametric and multiregional mr imaging features. Radiology 281(3):907–918. https://doi.org/10.1148/radiol.2016161382

    Article  PubMed  Google Scholar 

  17. Kim JY, Park JE, Jo Y, Shim WH, Nam SJ, Kim JH, Yoo RE, Choi SH, Kim HS (2019) Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients. Neuro Oncol 21(3):404–414. https://doi.org/10.1093/neuonc/noy133

    Article  PubMed  Google Scholar 

  18. Kniep HC, Madesta F, Schneider T, Hanning U, Schönfeld MH, Schön G, Fiehler J, Gauer T, Werner R, Gellissen S (2019) Radiomics of brain MRI: utility in prediction of metastatic tumor type. Radiology 290(2):479–487. https://doi.org/10.1148/radiol.2018180946

    Article  PubMed  Google Scholar 

  19. Lu CF, Hsu FT, Hsieh KL, Kao YJ, Cheng SJ, Hsu JB, Tsai PH, Chen RJ, Huang CC, Yen Y, Chen CY (2018) Machine learning-based radiomics for molecular subtyping of gliomas. Clin Cancer Res 24(18):4429–4436. https://doi.org/10.1158/1078-0432.Ccr-17-3445

    Article  PubMed  Google Scholar 

  20. Morin O, Chen WC, Nassiri F, Susko M, Magill ST, Vasudevan HN, Wu A, Vallières M, Gennatas ED, Valdes G, Pekmezci M, Alcaide-Leon P, Choudhury A, Interian Y, Mortezavi S, Turgutlu K, Bush NAO, Solberg TD, Braunstein SE, Sneed PK, Perry A, Zadeh G, McDermott MW, Villanueva-Meyer JE, Raleigh DR (2019) Integrated models incorporating radiologic and radiomic features predict meningioma grade, local failure, and overall survival. Neurooncol Adv. https://doi.org/10.1093/noajnl/vdz011

    Article  PubMed  PubMed Central  Google Scholar 

  21. Park YW, Oh J, You SC, Han K, Ahn SS, Choi YS, Chang JH, Kim SH, Lee SK (2019) Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging. Eur Radiol 29(8):4068–4076. https://doi.org/10.1007/s00330-018-5830-3

    Article  PubMed  Google Scholar 

  22. Peng J, Kim DD, Patel JB, Zeng X, Huang J, Chang K, Xun X, Zhang C, Sollee J, Wu J, Dalal DJ, Feng X, Zhou H, Zhu C, Zou B, Jin K, Wen PY, Boxerman JL, Warren KE, Poussaint TY, States LJ, Kalpathy-Cramer J, Yang L, Huang RY, Bai HX (2022) Deep learning-based automatic tumor burden assessment of pediatric high-grade gliomas, medulloblastomas, and other leptomeningeal seeding tumors. Neuro Oncol 24(2):289–299. https://doi.org/10.1093/neuonc/noab151

    Article  PubMed  Google Scholar 

  23. Ugga L, Cuocolo R, Solari D, Guadagno E, D’Amico A, Somma T, Cappabianca P, Basso D, de Caro ML, Cavallo LM, Brunetti A (2019) Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning. Neuroradiology 61(12):1365–1373. https://doi.org/10.1007/s00234-019-02266-1

    Article  PubMed  Google Scholar 

  24. Zhang Q, Cao J, Zhang J, Bu J, Yu Y, Tan Y, Feng Q, Huang M (2019) Differentiation of recurrence from radiation necrosis in gliomas based on the radiomics of combinational features and multimodality MRI images. Comput Math Methods Med 2019:2893043. https://doi.org/10.1155/2019/2893043

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang Y, Chen C, Tian Z, Xu J (2020) Discrimination between pituitary adenoma and craniopharyngioma using MRI-based image features and texture features. Jpn J Radiol 38(12):1125–1134. https://doi.org/10.1007/s11604-020-01021-4

    CAS  Article  PubMed  Google Scholar 

  26. Zhang Y, Chen JH, Chen TY, Lim SW, Wu TC, Kuo YT, Ko CC, Su MY (2019) Radiomics approach for prediction of recurrence in skull base meningiomas. Neuroradiology 61(12):1355–1364. https://doi.org/10.1007/s00234-019-02259-0

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhu Y, Man C, Gong L, Dong D, Yu X, Wang S, Fang M, Wang S, Fang X, Chen X, Tian J (2019) A deep learning radiomics model for preoperative grading in meningioma. Eur J Radiol 116:128–134. https://doi.org/10.1016/j.ejrad.2019.04.022

    Article  PubMed  Google Scholar 

  28. Chen L, Bentley P, Rueckert D (2017) Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks. Neuroimage Clin 15:633–643. https://doi.org/10.1016/j.nicl.2017.06.016

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chu R, Tauhid S, Glanz BI, Healy BC, Kim G, Oommen VV, Khalid F, Neema M, Bakshi R (2016) Whole brain volume measured from 1.5T versus 3T MRI in healthy subjects and patients with multiple sclerosis. J Neuroimaging 26(1):62–67. https://doi.org/10.1111/jon.12271

    Article  PubMed  Google Scholar 

  30. Dadar M, Collins DL (2021) BISON: Brain tissue segmentation pipeline using T(1) -weighted magnetic resonance images and a random forest classifier. Magn Reson Med 85(4):1881–1894. https://doi.org/10.1002/mrm.28547

    Article  PubMed  Google Scholar 

  31. Halder A, Talukdar NA (2019) Brain tissue segmentation using improved kernelized rough-fuzzy C-means with spatio-contextual information from MRI. Magn Reson Imaging 62:129–151. https://doi.org/10.1016/j.mri.2019.06.010

    Article  PubMed  Google Scholar 

  32. West J, Blystad I, Engström M, Warntjes JB, Lundberg P (2013) Application of quantitative MRI for brain tissue segmentation at 1.5 T and 3.0 T field strengths. PLoS ONE 8(9):e74795. https://doi.org/10.1371/journal.pone.0074795

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Gatto L, Franceschi E, Tosoni A, Di Nunno V, Maggio I, Lodi R, Brandes AA (2021) IDH inhibitors and beyond: the cornerstone of targeted glioma treatment. Mol Diagn Ther 25(4):457–473. https://doi.org/10.1007/s40291-021-00537-3

    CAS  Article  PubMed  Google Scholar 

  34. Di Nunno V, Franceschi E, Tosoni A, Gatto L, Maggio I, Lodi R, Angelini D, Bartolini S, Brandes AA (2022) Clinical and molecular features of patients with gliomas harboring idh1 non-canonical mutations: a systematic review and meta-analysis. Adv Ther 39(1):165–177. https://doi.org/10.1007/s12325-021-01977-3

    CAS  Article  PubMed  Google Scholar 

  35. Brandes AA, Franceschi E, Tosoni A, Blatt V, Pession A, Tallini G, Bertorelle R, Bartolini S, Calbucci F, Andreoli A, Frezza G, Leonardi M, Spagnolli F, Ermani M (2008) MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 26(13):2192–2197. https://doi.org/10.1200/jco.2007.14.8163

    Article  PubMed  Google Scholar 

  36. Maggio I, Franceschi E, Tosoni A, Nunno VD, Gatto L, Lodi R, Brandes AA (2021) Meningioma: not always a benign tumor a review of advances in the treatment of meningiomas. CNS Oncol 10(2):72. https://doi.org/10.2217/cns-2021-0003

    CAS  Article  Google Scholar 

  37. Qu L, Zhang Y, Wang S, Yap PT, Shen D (2020) Synthesized 7T MRI from 3T MRI via deep learning in spatial and wavelet domains. Med Image Anal 62:101663. https://doi.org/10.1016/j.media.2020.101663

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ertosun MG, Rubin DL (2015) Automated grading of gliomas using deep learning in digital pathology images: a modular approach with ensemble of convolutional neural networks. AMIA Annu Symp Proc 2015:1899–1908

    PubMed  PubMed Central  Google Scholar 

  39. Faust K, Lee MK, Dent A, Fiala C, Portante A, Rabindranath M, Alsafwani N, Gao A, Djuric U, Diamandis P (2022) Integrating morphologic and molecular histopathological features through whole slide image registration and deep learning. Neurooncology 4(1):vdac001. https://doi.org/10.1093/noajnl/vdac001

    Article  Google Scholar 

  40. Jin L, Shi F, Chun Q, Chen H, Ma Y, Wu S, Hameed NUF, Mei C, Lu J, Zhang J, Aibaidula A, Shen D, Wu J (2021) Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers. Neuro Oncol 23(1):44–52. https://doi.org/10.1093/neuonc/noaa163

    CAS  Article  PubMed  Google Scholar 

  41. Ker J, Bai Y, Lee HY, Rao J, Wang L (2019) Automated brain histology classification using machine learning. J Clin Neurosci 66:239–245. https://doi.org/10.1016/j.jocn.2019.05.019

    Article  PubMed  Google Scholar 

  42. Klitzman R (2015) Consenting for molecular diagnostics. Clin Chem 61(1):139–141. https://doi.org/10.1373/clinchem.2014.223404

    CAS  Article  PubMed  Google Scholar 

  43. Shafique A, Babaie M, Sajadi M, Batten A, Skdar S, Tizhoosh HR (2021) Automatic multi-stain registration of whole slide images in histopathology. Annu Int Conf IEEE Eng Med Biol Soc 2021:3622–3625. https://doi.org/10.1109/embc46164.2021.9629970

    Article  PubMed  Google Scholar 

  44. Kather JN, Pearson AT, Halama N, Jäger D, Krause J, Loosen SH, Marx A, Boor P, Tacke F, Neumann UP, Grabsch HI, Yoshikawa T, Brenner H, Chang-Claude J, Hoffmeister M, Trautwein C, Luedde T (2019) Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat Med 25(7):1054–1056. https://doi.org/10.1038/s41591-019-0462-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Wang Y, Acs B, Robertson S, Liu B, Solorzano L, Wählby C, Hartman J, Rantalainen M (2022) Improved breast cancer histological grading using deep learning. Ann Oncol 33(1):89–98. https://doi.org/10.1016/j.annonc.2021.09.007

    CAS  Article  PubMed  Google Scholar 

  46. Franceschi E, Tosoni A, Bartolini S, Minichillo S, Mura A, Asioli S, Bartolini D, Gardiman M, Gessi M, Ghimenton C, Giangaspero F, Lanza G, Marucci G, Novello M, Silini EM, Zunarelli E, Paccapelo A, Brandes AA (2020) Histopathological grading affects survival in patients with IDH-mutant grade II and grade III diffuse gliomas. Eur J Cancer 137:10–17. https://doi.org/10.1016/j.ejca.2020.06.018

    CAS  Article  PubMed  Google Scholar 

  47. Pei L, Jones KA, Shboul ZA, Chen JY, Iftekharuddin KM (2021) Deep neural network analysis of pathology images with integrated molecular data for enhanced glioma classification and grading. Front Oncol 11:668694. https://doi.org/10.3389/fonc.2021.668694

    Article  PubMed  PubMed Central  Google Scholar 

  48. Figarella-Branger D, Appay R, Metais A, Tauziède-Espariat A, Colin C, Rousseau A, Varlet P (2021) The 2021 WHO classification of tumours of the central nervous system. Ann Pathol. https://doi.org/10.1016/j.annpat.2021.11.005

    Article  PubMed  Google Scholar 

  49. Gatto L, Franceschi E, Tosoni A, Di Nunno V, Bartolini S, Brandes AA (2022) Molecular targeted therapies: time for a paradigm shift in medulloblastoma treatment? Cancers. https://doi.org/10.3390/cancers14020333

    Article  PubMed  PubMed Central  Google Scholar 

  50. Le Rhun E, Preusser M, Roth P, Reardon DA, van den Bent M, Wen P, Reifenberger G, Weller M (2019) Molecular targeted therapy of glioblastoma. Cancer Treat Rev 80:101896. https://doi.org/10.1016/j.ctrv.2019.101896

    CAS  Article  PubMed  Google Scholar 

  51. Touat M, Li YY, Boynton AN, Spurr LF, Iorgulescu JB, Bohrson CL, Cortes-Ciriano I, Birzu C, Geduldig JE, Pelton K, Lim-Fat MJ, Pal S, Ferrer-Luna R, Ramkissoon SH, Dubois F, Bellamy C, Currimjee N, Bonardi J, Qian K, Ho P, Malinowski S, Taquet L, Jones RE, Shetty A, Chow KH, Sharaf R, Pavlick D, Albacker LA, Younan N, Baldini C, Verreault M, Giry M, Guillerm E, Ammari S, Beuvon F, Mokhtari K, Alentorn A, Dehais C, Houillier C, Laigle-Donadey F, Psimaras D, Lee EQ, Nayak L, McFaline-Figueroa JR, Carpentier A, Cornu P, Capelle L, Mathon B, Barnholtz-Sloan JS, Chakravarti A, Bi WL, Chiocca EA, Fehnel KP, Alexandrescu S, Chi SN, Haas-Kogan D, Batchelor TT, Frampton GM, Alexander BM, Huang RY, Ligon AH, Coulet F, Delattre JY, Hoang-Xuan K, Meredith DM, Santagata S, Duval A, Sanson M, Cherniack AD, Wen PY, Reardon DA, Marabelle A, Park PJ, Idbaih A, Beroukhim R, Bandopadhayay P, Bielle F, Ligon KL (2020) Mechanisms and therapeutic implications of hypermutation in gliomas. Nature 580(7804):517–523. https://doi.org/10.1038/s41586-020-2209-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Wen PY, Stein A, van den Bent M, De Greve J, Wick A, de Vos F, von Bubnoff N, van Linde ME, Lai A, Prager GW, Campone M, Fasolo A, Lopez-Martin JA, Kim TM, Mason WP, Hofheinz RD, Blay JY, Cho DC, Gazzah A, Pouessel D, Yachnin J, Boran A, Burgess P, Ilankumaran P, Gasal E, Subbiah V (2022) Dabrafenib plus trametinib in patients with BRAF(V600E)-mutant low-grade and high-grade glioma (ROAR): a multicentre, open-label, single-arm, phase 2, basket trial. Lancet Oncol 23(1):53–64. https://doi.org/10.1016/s1470-2045(21)00578-7

    CAS  Article  PubMed  Google Scholar 

  53. Têtu B, Evans A (2014) Canadian licensure for the use of digital pathology for routine diagnoses: one more step toward a new era of pathology practice without borders. Arch Pathol Lab Med 138(3):302–304. https://doi.org/10.5858/arpa.2013-0289-ED

    Article  PubMed  Google Scholar 

  54. Kurc T, Bakas S, Ren X, Bagari A, Momeni A, Huang Y, Zhang L, Kumar A, Thibault M, Qi Q, Wang Q, Kori A, Gevaert O, Zhang Y, Shen D, Khened M, Ding X, Krishnamurthi G, Kalpathy-Cramer J, Davis J, Zhao T, Gupta R, Saltz J, Farahani K (2020) Segmentation and classification in digital pathology for glioma research: challenges and deep learning approaches. Front Neurosci 14:27. https://doi.org/10.3389/fnins.2020.00027

    Article  PubMed  PubMed Central  Google Scholar 

  55. Levine AB, Schlosser C, Grewal J, Coope R, Jones SJM, Yip S (2019) Rise of the machines: advances in deep learning for cancer diagnosis. Trends Cancer 5(3):157–169. https://doi.org/10.1016/j.trecan.2019.02.002

    Article  PubMed  Google Scholar 

  56. Hollon TC, Pandian B, Adapa AR, Urias E, Save AV, Khalsa SSS, Eichberg DG, D’Amico RS, Farooq ZU, Lewis S, Petridis PD, Marie T, Shah AH, Garton HJL, Maher CO, Heth JA, McKean EL, Sullivan SE, Hervey-Jumper SL, Patil PG, Thompson BG, Sagher O, McKhann GM II, Komotar RJ, Ivan ME, Snuderl M, Otten ML, Johnson TD, Sisti MB, Bruce JN, Muraszko KM, Trautman J, Freudiger CW, Canoll P, Lee H, Camelo-Piragua S, Orringer DA (2020) Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks. Nat Med 26(1):52–58. https://doi.org/10.1038/s41591-019-0715-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Chang K, Beers AL, Bai HX, Brown JM, Ly KI, Li X, Senders JT, Kavouridis VK, Boaro A, Su C, Bi WL, Rapalino O, Liao W, Shen Q, Zhou H, Xiao B, Wang Y, Zhang PJ, Pinho MC, Wen PY, Batchelor TT, Boxerman JL, Arnaout O, Rosen BR, Gerstner ER, Yang L, Huang RY, Kalpathy-Cramer J (2019) Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement. Neuro Oncol 21(11):1412–1422. https://doi.org/10.1093/neuonc/noz106

    Article  PubMed  PubMed Central  Google Scholar 

  58. Charalampaki P, Nakamura M, Athanasopoulos D, Heimann A (2019) Confocal-assisted multispectral fluorescent microscopy for brain tumor surgery. Front Oncol 9:583. https://doi.org/10.3389/fonc.2019.00583

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chen D, Nauen DW, Park HC, Li D, Yuan W, Li A, Guan H, Kut C, Chaichana KL, Bettegowda C, Quiñones-Hinojosa A, Li X (2021) Label-free imaging of human brain tissue at subcellular resolution for potential rapid intra-operative assessment of glioma surgery. Theranostics 11(15):7222–7234. https://doi.org/10.7150/thno.59244

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Ziebart A, Stadniczuk D, Roos V, Ratliff M, von Deimling A, Hänggi D, Enders F (2021) Deep neural network for differentiation of brain tumor tissue displayed by confocal laser endomicroscopy. Front Oncol 11:668273. https://doi.org/10.3389/fonc.2021.668273

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zoli M, Staartjes VE, Guaraldi F, Friso F, Rustici A, Asioli S, Sollini G, Pasquini E, Regli L, Serra C, Mazzatenta D (2020) Machine learning-based prediction of outcomes of the endoscopic endonasal approach in Cushing disease: is the future coming? Neurosurg Focus 48(6):E5. https://doi.org/10.3171/2020.3.Focus2060

    Article  PubMed  Google Scholar 

  62. Xue J, Wang B, Ming Y, Liu X, Jiang Z, Wang C, Liu X, Chen L, Qu J, Xu S, Tang X, Mao Y, Liu Y, Li D (2020) Deep learning-based detection and segmentation-assisted management of brain metastases. Neuro Oncol 22(4):505–514. https://doi.org/10.1093/neuonc/noz234

    Article  PubMed  Google Scholar 

  63. Xing Y, Nguyen D, Lu W, Yang M, Jiang S (2020) Technical note: a feasibility study on deep learning-based radiotherapy dose calculation. Med Phys 47(2):753–758. https://doi.org/10.1002/mp.13953

    Article  PubMed  Google Scholar 

  64. Tsang DS, Tsui G, McIntosh C, Purdie T, Bauman G, Dama H, Laperriere N, Millar BA, Shultz DB, Ahmed S, Khandwala M, Hodgson DC (2022) A pilot study of machine-learning based automated planning for primary brain tumours. Radiat Oncol 17(1):3. https://doi.org/10.1186/s13014-021-01967-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Lu SL, Xiao FR, Cheng JC, Yang WC, Cheng YH, Chang YC, Lin JY, Liang CH, Lu JT, Chen YF, Hsu FM (2021) Randomized multi-reader evaluation of automated detection and segmentation of brain tumors in stereotactic radiosurgery with deep neural networks. Neuro Oncol 23(9):1560–1568. https://doi.org/10.1093/neuonc/noab071

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hong JC, Eclov NCW, Dalal NH, Thomas SM, Stephens SJ, Malicki M, Shields S, Cobb A, Mowery YM, Niedzwiecki D, Tenenbaum JD, Palta M (2020) System for high-intensity evaluation during radiation therapy (SHIELD-RT): a prospective randomized study of machine learning-directed clinical evaluations during radiation and chemoradiation. J Clin Oncol 38(31):3652–3661. https://doi.org/10.1200/jco.20.01688

    Article  PubMed  Google Scholar 

  67. Gutsche R, Lohmann P, Hoevels M, Ruess D, Galldiks N, Visser-Vandewalle V, Treuer H, Ruge M, Kocher M (2022) Radiomics outperforms semantic features for prediction of response to stereotactic radiosurgery in brain metastases. Radiother Oncol 166:37–43. https://doi.org/10.1016/j.radonc.2021.11.010

    CAS  Article  PubMed  Google Scholar 

  68. Dinkla AM, Wolterink JM, Maspero M, Savenije MHF, Verhoeff JJC, Seravalli E, Išgum I, Seevinck PR, van den Berg CAT (2018) MR-only brain radiation therapy: dosimetric evaluation of synthetic cts generated by a dilated convolutional neural network. Int J Radiat Oncol Biol Phys 102(4):801–812. https://doi.org/10.1016/j.ijrobp.2018.05.058

    Article  PubMed  Google Scholar 

  69. Cusumano D, Boldrini L, Dhont J, Fiorino C, Green O, Güngör G, Jornet N, Klüter S, Landry G, Mattiucci GC, Placidi L, Reynaert N, Ruggieri R, Tanadini-Lang S, Thorwarth D, Yadav P, Yang Y, Valentini V, Verellen D, Indovina L (2021) Artificial intelligence in magnetic resonance guided radiotherapy: medical and physical considerations on state of art and future perspectives. Phys Med 85:175–191. https://doi.org/10.1016/j.ejmp.2021.05.010

    Article  PubMed  Google Scholar 

  70. Huynh E, Hosny A, Guthier C, Bitterman DS, Petit SF, Haas-Kogan DA, Kann B, Aerts H, Mak RH (2020) Artificial intelligence in radiation oncology. Nat Rev Clin Oncol 17(12):771–781. https://doi.org/10.1038/s41571-020-0417-8

    Article  PubMed  Google Scholar 

  71. Bibault JE, Giraud P, Burgun A (2016) Big data and machine learning in radiation oncology: state of the art and future prospects. Cancer Lett 382(1):110–117. https://doi.org/10.1016/j.canlet.2016.05.033

    CAS  Article  PubMed  Google Scholar 

  72. Boldrini L, Bibault JE, Masciocchi C, Shen Y, Bittner MI (2019) Deep learning: a review for the radiation oncologist. Front Oncol 9:977. https://doi.org/10.3389/fonc.2019.00977

    Article  PubMed  PubMed Central  Google Scholar 

  73. Meyer P, Noblet V, Mazzara C, Lallement A (2018) Survey on deep learning for radiotherapy. Comput Biol Med 98:126–146. https://doi.org/10.1016/j.compbiomed.2018.05.018

    Article  PubMed  Google Scholar 

  74. Rattan R, Kataria T, Banerjee S, Goyal S, Gupta D, Pandita A, Bisht S, Narang K, Mishra SR (2019) Artificial intelligence in oncology, its scope and future prospects with specific reference to radiation oncology. BJR Open 1(1):20180031. https://doi.org/10.1259/bjro.20180031

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sahiner B, Pezeshk A, Hadjiiski LM, Wang X, Drukker K, Cha KH, Summers RM, Giger ML (2019) Deep learning in medical imaging and radiation therapy. Med Phys 46(1):e1–e36. https://doi.org/10.1002/mp.13264

    Article  PubMed  Google Scholar 

  76. Shen C, Nguyen D, Zhou Z, Jiang SB, Dong B, Jia X (2020) An introduction to deep learning in medical physics: advantages, potential, and challenges. Phys Med Biol 65(5):05tr1. https://doi.org/10.1088/1361-6560/ab6f51

    Article  Google Scholar 

  77. Thompson RF, Valdes G, Fuller CD, Carpenter CM, Morin O, Aneja S, Lindsay WD, Aerts H, Agrimson B, Deville C Jr, Rosenthal SA, Yu JB, Thomas CR Jr (2018) Artificial intelligence in radiation oncology: a specialty-wide disruptive transformation? Radiother Oncol 129(3):421–426. https://doi.org/10.1016/j.radonc.2018.05.030

    Article  PubMed  Google Scholar 

  78. Maziero D, Straza MW, Ford JC, Bovi JA, Diwanji T, Stoyanova R, Paulson ES, Mellon EA (2021) MR-guided radiotherapy for brain and spine tumors. Front Oncol 11:626100. https://doi.org/10.3389/fonc.2021.626100

    Article  PubMed  PubMed Central  Google Scholar 

  79. Rai R, Kumar S, Batumalai V, Elwadia D, Ohanessian L, Juresic E, Cassapi L, Vinod SK, Holloway L, Keall PJ, Liney GP (2017) The integration of MRI in radiation therapy: collaboration of radiographers and radiation therapists. J Med Radiat Sci 64(1):61–68. https://doi.org/10.1002/jmrs.225

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hyun CM, Kim HP, Lee SM, Lee S, Seo JK (2018) Deep learning for undersampled MRI reconstruction. Phys Med Biol 63(13):135007. https://doi.org/10.1088/1361-6560/aac71a

    Article  PubMed  Google Scholar 

  81. Della Pepa GM, Caccavella VM, Menna G, Ius T, Auricchio AM, Sabatino G, La Rocca G, Chiesa S, Gaudino S, Marchese E, Olivi A (2021) Machine learning-based prediction of early recurrence in glioblastoma patients: a glance towards precision medicine. Neurosurgery 89(5):873–883. https://doi.org/10.1093/neuros/nyab320

    Article  PubMed  Google Scholar 

  82. Emami H, Dong M, Nejad-Davarani SP, Glide-Hurst CK (2018) Generating synthetic CTs from magnetic resonance images using generative adversarial networks. Med Phys. https://doi.org/10.1002/mp.13047

    Article  PubMed  Google Scholar 

  83. Han X (2017) MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys 44(4):1408–1419. https://doi.org/10.1002/mp.12155

    CAS  Article  PubMed  Google Scholar 

  84. Johansson A, Karlsson M, Nyholm T (2011) CT substitute derived from MRI sequences with ultrashort echo time. Med Phys 38(5):2708–2714. https://doi.org/10.1118/1.3578928

    Article  PubMed  Google Scholar 

  85. Lei Y, Harms J, Wang T, Liu Y, Shu HK, Jani AB, Curran WJ, Mao H, Liu T, Yang X (2019) MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks. Med Phys 46(8):3565–3581. https://doi.org/10.1002/mp.13617

    Article  PubMed  Google Scholar 

  86. Liu F, Yadav P, Baschnagel AM, McMillan AB (2019) MR-based treatment planning in radiation therapy using a deep learning approach. J Appl Clin Med Phys 20(3):105–114. https://doi.org/10.1002/acm2.12554

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lundervold AS, Lundervold A (2019) An overview of deep learning in medical imaging focusing on MRI. Z Med Phys 29(2):102–127. https://doi.org/10.1016/j.zemedi.2018.11.002

    Article  PubMed  Google Scholar 

  88. Boulanger M, Nunes JC, Chourak H, Largent A, Tahri S, Acosta O, De Crevoisier R, Lafond C, Barateau A (2021) Deep learning methods to generate synthetic CT from MRI in radiotherapy: a literature review. Phys Med 89:265–281. https://doi.org/10.1016/j.ejmp.2021.07.027

    CAS  Article  PubMed  Google Scholar 

  89. Isaksson LJ, Pepa M, Zaffaroni M, Marvaso G, Alterio D, Volpe S, Corrao G, Augugliaro M, Starzyńska A, Leonardi MC, Orecchia R, Jereczek-Fossa BA (2020) Machine learning-based models for prediction of toxicity outcomes in radiotherapy. Front Oncol 10:790. https://doi.org/10.3389/fonc.2020.00790

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kim HY, Cho SJ, Sunwoo L, Baik SH, Bae YJ, Choi BS, Jung C, Kim JH (2021) Classification of true progression after radiotherapy of brain metastasis on MRI using artificial intelligence: a systematic review and meta-analysis. Neurooncol Adv 3(1):vdab080. https://doi.org/10.1093/noajnl/vdab080

    Article  PubMed  PubMed Central  Google Scholar 

  91. Houy N, Le Grand F (2019) Personalized oncology with artificial intelligence: the case of temozolomide. Artif Intell Med 99:101693. https://doi.org/10.1016/j.artmed.2019.07.001

    Article  PubMed  Google Scholar 

  92. Wang Z, Wang Y, Yang T, Xing H, Wang Y, Gao L, Guo X, Xing B, Wang Y, Ma W (2021) Machine learning revealed stemness features and a novel stemness-based classification with appealing implications in discriminating the prognosis, immunotherapy and temozolomide responses of 906 glioblastoma patients. Brief Bioinform. https://doi.org/10.1093/bib/bbab032

    Article  PubMed  PubMed Central  Google Scholar 

  93. Neves BJ, Agnes JP, Gomes MDN, Henriques Donza MR, Gonçalves RM, Delgobo M, de Souza R, Neto L, Senger MR, Silva-Junior FP, Ferreira SB, Zanotto-Filho A, Andrade CH (2020) Efficient identification of novel anti-glioma lead compounds by machine learning models. Eur J Med Chem 189:111981. https://doi.org/10.1016/j.ejmech.2019.111981

    CAS  Article  PubMed  Google Scholar 

  94. Ding J, Zhao R, Qiu Q, Chen J, Duan J, Cao X, Yin Y (2022) Developing and validating a deep learning and radiomic model for glioma grading using multiplanar reconstructed magnetic resonance contrast-enhanced T1-weighted imaging: a robust, multi-institutional study. Quant Imaging Med Surg 12(2):1517–1528. https://doi.org/10.21037/qims-21-722

    Article  PubMed  PubMed Central  Google Scholar 

  95. Yin S, Luo X, Yang Y, Shao Y, Ma L, Lin C, Yang Q, Wang D, Luo Y, Mai Z, Fan W, Zheng D, Li J, Cheng F, Zhang Y, Zhong X, Shen F, Shao G, Wu J, Sun Y, Luo H, Li C, Gao Y, Shen D, Zhang R, Xie C (2022) Development and validation of a deep-learning model for detecting brain metastases on 3D post-contrast MRI: a multi-center multi-reader evaluation study. Neuro Oncol. https://doi.org/10.1093/neuonc/noac025

    Article  PubMed  Google Scholar 

  96. Yoganathan SA, Paul SN, Paloor S, Torfeh T, Chandramouli SH, Hammoud R, Al-Hammadi N (2022) Automatic segmentation of MR images for high-dose-rate cervical cancer brachytherapy using deep learning. Med Phys. https://doi.org/10.1002/mp.15506

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to study conception, design, and review. The first draft of the article was written by all authors which also performed a revision of the first draft. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Enrico Franceschi.

Ethics declarations

Competing interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Di Nunno, V., Fordellone, M., Minniti, G. et al. Machine learning in neuro-oncology: toward novel development fields. J Neurooncol (2022). https://doi.org/10.1007/s11060-022-04068-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11060-022-04068-7

Keywords

  • Artificial intelligence
  • Deep learning
  • Machine learning
  • Brain tumors
  • Central nervous system malignancies