Skip to main content

Evaluating growth trends of residual sporadic vestibular schwannomas: a systematic review and meta-analysis

Abstract

Background

Gross total resection remains the gold-standard approach for vestibular schwannomas (VS) when surgery is indicated. In select cases, incomplete resection (IR) becomes a desired alternative to preserve the facial nerve function and the patient’s quality of life. While a lot of earlier studies described incompletely resected sporadic VSs as dormant, more recent studies reported a higher growth rate following IR, therefore an evaluation of the residual VS growth rates could have important implications for the follow-up treatment protocols and provide relevant information for neurosurgeons, neuro-otologists, neuropathologists, and radiologists. Although prognostic factors predicting preoperative VS growth have been previously investigated, these factors have not been investigated following IR. Our review aims to examine the growth rate of residual sporadic VS following IR and to examine variables associated with the regrowth of residual VS.

Methods

The review was conducted in accordance with the PRISMA guidelines. Six databases (MEDLINE (Ovid), Embase (Ovid), CINAHL Plus (EBSCO), Cochrane Central Register of Controlled Trials (CENTRAL), WHO International Clinical Trials Registry Platform and UK Clinical Trials Gateway (WHO ICTRP) were searched. Full-text articles analysing growth rates in at least ten patients who had residual VS after IR were assessed. We conducted a meta-analysis using a random-effects model via RevMan.

Results

14 studies totalling 849 patients were included in the analysis. The mean planimetric growth rate was 1.57 mm/year (range 0.16–3.81 mm/year). The mean volumetric growth rate was 281.725 mm3/year (range 17.9–530.0 mm3/year). Age, sex, pre-operative tumour size/volume, cystic tumour sub-type, MIB-1 index, and intracanalicular tumour location were not associated with residual growth. Residual tumour size/volume was statistically significant to growth (OR = 0.65, 95% CI 0.47–0.90, p = 0.01). Radiological re-growth occurred in an average of 26.6% of cases (range 0–54.5%).

Conclusion

From our analysis, only the residual tumour volume/size was associated with residual VS growth. Therefore, close postoperative surveillance for the first year, followed by an annual MRI scan for at least 5 years, and subsequently extended interval surveillance remains of utmost importance to monitor disease progression and provide timely surgical and adjuvant interventions. Our study shows that future work should be aimed at molecular and histological characteristics of residual VSs to aid prognostic understanding of growth.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Babu R, Sharma R, Bagley JH et al (2013) Vestibular schwannomas in the modern era: epidemiology, treatment trends, and disparities in management. J Neurosurg 119:121–130. https://doi.org/10.3171/2013.1.JNS121370

    Article  PubMed  Google Scholar 

  2. Jeyakumar A, Seth R, Brickman TM, Dutcher P (2007) The prevalence and clinical course of patients with “incidental” acoustic neuromas. Acta Otolaryngol 127:1051–1057. https://doi.org/10.1080/00016480701200210

    Article  PubMed  Google Scholar 

  3. Goldbrunner R, Weller M, Regis J et al (2020) EANO guideline on the diagnosis and treatment of vestibular schwannoma. Neuro Oncol 22:31–45. https://doi.org/10.1093/neuonc/noz153

    Article  PubMed  Google Scholar 

  4. Stangerup S-E, Tos M, Thomsen J, Caye-Thomasen P (2010) True incidence of vestibular schwannoma? Neurosurgery 67:1335–1340

    Article  Google Scholar 

  5. Ostrom QT, Gittleman H, Liao P et al (2017) CBTRUS Statistical Report: primary brain and other central nervous system tumors diagnosed in the united states in 2010–2014. Neuro Oncol 19:v1–v88. https://doi.org/10.1093/neuonc/nox158

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lanser MJ, Sussman SA, Frazer K (1992) Epidemiology, pathogenesis, and genetics of acoustic tumors. Otolaryngol Clin North Am 25:499–520

    CAS  Article  Google Scholar 

  7. Kshettry VR, Hsieh JK, Ostrom QT et al (2015) Incidence of vestibular schwannomas in the United States. J Neurooncol 124:223–228. https://doi.org/10.1007/s11060-015-1827-9

    Article  PubMed  Google Scholar 

  8. Breivik CN, Varughese JK, Wentzel-Larsen T et al (2012) Conservative management of vestibular schwannoma—a prospective cohort study: treatment, symptoms, and quality of life. Neurosurgery 70:1072–1080

    Article  Google Scholar 

  9. Kleijwegt M, Bettink F, Malessy M et al (2020) Clinical predictors leading to change of initial conservative treatment of 836 vestibular schwannomas. J Neurol Surg Part B: Skull Base 81:15–21

    Article  Google Scholar 

  10. Rutherford SA, King AT (2005) Vestibular schwannoma management: What is the “best” option? Br J Neurosurg 19:309–316. https://doi.org/10.1080/02688690500305399

    CAS  Article  PubMed  Google Scholar 

  11. Schneider JR, Chiluwal AK, Arapi O et al (2020) Near total versus gross total resection of large vestibular schwannomas: facial nerve outcome. Oper Neurosurg (Hagerstown) 19:414–421. https://doi.org/10.1093/ons/opaa056

    Article  Google Scholar 

  12. Silverstein H, McDaniel A, Norrell H, Wazen J (1985) Conservative management of acoustic neuroma in the elderly patient. Laryngoscope 95:766–770

    CAS  Article  Google Scholar 

  13. Comey CH, Jannetta PJ, Sheptak PE et al (1995) Staged removal of acoustic tumors: techniques and lessons learned from a series of 83 patients. Neurosurgery 37:911–915. https://doi.org/10.1227/00006123-199511000-00010

    Article  Google Scholar 

  14. Bloch DC, Oghalai JS, Jackler RK et al (2004) The fate of the tumor remnant after less-than-complete acoustic neuroma resection. Otolaryngol-head neck surg 130:104–112. https://doi.org/10.1016/S0194-5998(03)01598-5

    Article  PubMed  Google Scholar 

  15. Roberson JBJ, Brackmann DE, Hitselberger WE (1996) Acoustic neuroma recurrence after suboccipital resection: management with translabyrinthine resection. Am J Otol 17:307–311

    PubMed  Google Scholar 

  16. Kemink JL, Langman AW, Niparko JK, Graham MD (1991) Operative management of acoustic neuromas: the priority of neurologic function over complete resection. Otolaryngol-head neck surg 104:96–99. https://doi.org/10.1177/019459989110400117

    CAS  Article  PubMed  Google Scholar 

  17. Jacob JT, Carlson ML, Driscoll CL, Link MJ (2016) Volumetric analysis of tumor control following subtotal and near-total resection of vestibular schwannoma. Laryngoscope 126(8):1877–1882. https://doi.org/10.1002/lary.25779

    CAS  Article  PubMed  Google Scholar 

  18. Seol HJ, Kim C, Park C-K et al (2006) Optimal extent of resection in vestibular schwannoma surgery: relationship to recurrence and facial nerve preservation. Neurol Med Chir (Tokyo) 46:171–176. https://doi.org/10.2176/nmc.46.176

    Article  Google Scholar 

  19. Vakilian S, Souhami L, Melançon D, Zeitouni A (2012) Volumetric measurement of vestibular schwannoma tumour growth following partial resection: predictors for recurrence. J Neurol Surg B Skull Base 73:117–120. https://doi.org/10.1055/s-0032-1301395

    Article  PubMed  PubMed Central  Google Scholar 

  20. McInnes MDF, Moher D, Thombs BD et al (2018) Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement. JAMA 319:388–396. https://doi.org/10.1001/jama.2017.19163

    Article  PubMed  Google Scholar 

  21. Shea BJ, Reeves BC, Wells G et al (2017) AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 358:j4008. https://doi.org/10.1136/bmj.j4008

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sterne JA, Hernán MA, Reeves BC et al (2016) ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ (Online). https://doi.org/10.1136/bmj.i4919

    Article  Google Scholar 

  23. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A (2016) Rayyan—a web and mobile app for systematic reviews. Syst Rev 5:210. https://doi.org/10.1186/s13643-016-0384-4

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hayden JA, van der Windt DA, Cartwright JL et al (2013) Assessing bias in studies of prognostic factors. Ann Intern Med 158:280–286. https://doi.org/10.7326/0003-4819-158-4-201302190-00009

    Article  PubMed  Google Scholar 

  25. Page MJ, Mckenzie JE, Higgins JPT (2018) Tools for assessing risk of reporting biases in studies and syntheses of studies : a systematic review. BMJ Open. https://doi.org/10.1136/bmjopen-2017-019703

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fieux M, Zaouche S, Rabaste S et al (2020) MRI monitoring of residual vestibular schwannomas: modeling and predictors of growth. Otol Neurotol. https://doi.org/10.1097/MAO.0000000000002742

    Article  PubMed  Google Scholar 

  27. Iannella G, de Vincentiis M, di Gioia C et al (2017) Subtotal resection of vestibular schwannoma: evaluation with Ki-67 measurement, magnetic resonance imaging, and long-term observation. J Int Med Res 45:1061–1073. https://doi.org/10.1177/0300060516686873

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fukuda M, Oishi M, Hiraishi T et al (2011) Clinicopathological factors related to regrowth of vestibular schwannoma after incomplete resection: clinical article. J Neurosurg 114:1224–1231. https://doi.org/10.3171/2010.11.JNS101041

    Article  PubMed  Google Scholar 

  29. Schwartz MS, Kari E, Strickland BM et al (2013) Evaluation of the increased use of partial resection of large vestibular schwanommas: facial nerve outcomes and recurrence/regrowth rates. Otol Neurotol 34:1456–1464. https://doi.org/10.1097/MAO.0b013e3182976552

    Article  PubMed  Google Scholar 

  30. Kasbekar Av, Adan GH, Beacall A et al (2018) Growth patterns of residual tumor in preoperatively growing vestibular schwannomas. J Neurol Surg, Part B: Skull Base 79:319–324. https://doi.org/10.1055/s-0037-1607421

    Article  Google Scholar 

  31. Zumofen DW, Guffi T, Epple C, Westermann B, Krähenbühl AK, Zabka S, Taub E, Bodmer D, Mariani L (2018) Intended near-total removal of Koos grade IV vestibular schwannomas: reconsidering the treatment paradigm. Neurosurgery 82(2):202–210

  32. Strickland BA, Ravina K, Jackanich A et al (2020) Intentional subtotal resection of vestibular schwannoma: a reexamination. J Neurol Surg, Part B: Skull Base 81:136–141. https://doi.org/10.1055/s-0039-1679898

    Article  Google Scholar 

  33. Bernardeschi D, Pyatigorskaya N, Vanier A, Bielle F, Smail M, Lamas G, Sterkers O, Kalamarides M (2017) Role of electrophysiology in guiding near-total resection for preservation of facial nerve function in the surgical treatment of large vestibular schwannomas. J Neurosurg 128(3):903–910

  34. Breshears JD, Morshed RA, Molinaro AM et al (2020) Residual tumor volume and location predict progression after primary subtotal resection of sporadic vestibular schwannomas: a retrospective volumetric study. Neurosurgery. https://doi.org/10.1093/neuros/nyz200

    Article  PubMed  PubMed Central  Google Scholar 

  35. Choi Y, Kim S, Kwak D-W et al (2018) Maximum diameter versus volumetric assessment for the response evaluation of vestibular schwannomas receiving stereotactic radiotherapy. Radiat Oncol J 36:114–121. https://doi.org/10.3857/roj.2018.00031

    Article  PubMed  PubMed Central  Google Scholar 

  36. MacKeith S, Das T, Graves M et al (2018) A comparison of semi-automated volumetric vs linear measurement of small vestibular schwannomas. Eur Arch Otorhinolaryngol 275:867–874. https://doi.org/10.1007/s00405-018-4865-z

    Article  PubMed  PubMed Central  Google Scholar 

  37. van de Langenberg R, de Bondt BJ, Nelemans PJ et al (2009) Follow-up assessment of vestibular schwannomas: volume quantification versus two-dimensional measurements. Neuroradiology 51:517–524. https://doi.org/10.1007/s00234-009-0529-4

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shin YJ, Fraysse B, Cognard C et al (2000) Effectiveness of conservative management of acoustic neuromas. Am J Otol 21:857–862

    CAS  PubMed  Google Scholar 

  39. Cross JJ, Baguley DM, Antoun NM et al (2006) Reproducibility of volume measurements of vestibular schwannomas—a preliminary study. Clin otolaryngol 31:123–129. https://doi.org/10.1111/j.1749-4486.2006.01161.x

    CAS  Article  PubMed  Google Scholar 

  40. Fiirgaard B, Pedersen CB, Lundorf E (1997) The size of acoustic neuromas: CT and MRI. Neuroradiology 39:599–601. https://doi.org/10.1007/s002340050475

    CAS  Article  PubMed  Google Scholar 

  41. Caye-Thomasen P, Hansen S, Dethloff T et al (2006) Sublocalization and volumetric growth pattern of intracanalicular vestibular schwannomas. Laryngoscope 116:1131–1135. https://doi.org/10.1097/01.MLG.0000217528.37106.2D

    Article  PubMed  Google Scholar 

  42. Charabi S, Thomsen J, Mantoni M et al (1995) Acoustic neuroma (vestibular schwannoma): growth and surgical and nonsurgical consequences of the wait-and-see policy. Otolaryngol-head neck surg 113:5–14. https://doi.org/10.1016/s0194-5998(95)70138-9

    CAS  Article  PubMed  Google Scholar 

  43. Luppino FS, Grooters E, de Bruïne FT et al (2006) Volumetrical measurements in vestibular schwannoma, the influence of slice thickness and patient’s repositioning. Otol neurotol 27:962–968. https://doi.org/10.1097/01.mao.0000235371.39998.a7

    Article  PubMed  Google Scholar 

  44. Niemczyk K, Vaneecloo FM, Lemaitre L et al (1999) The growth of acoustic neuromas in volumetric radiologic assessment. Am J Otol 20:244–248

    CAS  PubMed  Google Scholar 

  45. Laasonen EM, Troupp H (1986) Volume growth rate of acoustic neurinomas. Neuroradiology 28:203–207. https://doi.org/10.1007/BF00548193

    CAS  Article  PubMed  Google Scholar 

  46. Meijer OWM, Weijmans EJ, Knol DL et al (2008) Tumor-volume changes after radiosurgery for vestibular schwannoma: implications for follow-up MR imaging protocol. AJNR Am J Neuroradiol 29:906–910. https://doi.org/10.3174/ajnr.A0969

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Vokurka EA, Herwadkar A, Thacker NA et al (2002) Using Bayesian tissue classification to improve the accuracy of vestibular schwannoma volume and growth measurement. AJNR Am J Neuroradiol 23:459–467

    PubMed  PubMed Central  Google Scholar 

  48. Carlson ML, van Abel KM, Driscoll CL et al (2012) Magnetic resonance imaging surveillance following vestibular schwannoma resection. Laryngoscope 122:378–388. https://doi.org/10.1002/lary.22411

    Article  PubMed  Google Scholar 

  49. Tysome JR, Moffat DA (2012) Magnetic resonance imaging after translabyrinthine complete excision of vestibular schwannomas. J Neurol Surg B Skull Base 73:121–124. https://doi.org/10.1055/s-0032-1301397

    Article  PubMed  PubMed Central  Google Scholar 

  50. Brors D, Schäfers M, Bodmer D et al (2003) Postoperative magnetic resonance imaging findings after transtemporal and translabyrinthine vestibular schwannoma resection. Laryngoscope 113:420–426. https://doi.org/10.1097/00005537-200303000-00006

    Article  PubMed  Google Scholar 

  51. Elster AD, DiPersio DA (1990) Cranial postoperative site: assessment with contrast-enhanced MR imaging. Radiology 174(1):93–98

  52. Smith M, Castillo M, Campbell J et al (1995) Baseline and follow-up MRI of the internal auditory canal after suboccipital resection of acoustic schwannoma: appearances and clinical correlations. Neuroradiology 37:317–320. https://doi.org/10.1007/BF00588345

    CAS  Article  PubMed  Google Scholar 

  53. Somers T, Kania R, Waterval J, van Havenbergh T (2018) What is the required frequency of mri scanning in the wait and scan management? J Int Adv Otol 14:85–89. https://doi.org/10.5152/iao.2018.5348

    Article  PubMed  PubMed Central  Google Scholar 

  54. Miller ME, Lin H, Mastrodimos B, Cueva RA (2017) Long-term MRI surveillance after microsurgery for vestibular schwannoma. Laryngoscope 127:2132–2138. https://doi.org/10.1002/lary.26525

    Article  PubMed  Google Scholar 

  55. Lee W-J, Isaacson JE (2005) Postoperative imaging and follow-up of vestibular schwannomas. Otol Neurotol. https://doi.org/10.1097/00129492-200501000-00018

    Article  PubMed  Google Scholar 

  56. Whitley H, Benedict NT, Tringali S et al (2021) Identifying factors associated with the growth of vestibular schwannomas: a systematic review. World Neurosurg 149:e766–e779. https://doi.org/10.1016/j.wneu.2021.01.101

    Article  PubMed  Google Scholar 

  57. Paldor I, Chen AS, Kaye AH (2016) Growth rate of vestibular schwannoma. J Clin Neurosci 32:1–8. https://doi.org/10.1016/j.jocn.2016.05.003

    Article  PubMed  Google Scholar 

  58. Herwadker A, Vokurka EA, Evans DGR et al (2005) Size and growth rate of sporadic vestibular schwannoma: predictive value of information available at presentation. Otol neurotol 26:86–92. https://doi.org/10.1097/00129492-200501000-00015

    Article  PubMed  Google Scholar 

  59. Prueter J, Norvell D, Backous D (2019) Ki-67 index as a predictor of vestibular schwannoma regrowth or recurrence. J Laryngol Otol 133:205–207. https://doi.org/10.1017/S0022215119000549

    CAS  Article  PubMed  Google Scholar 

  60. Peng H, Tan X, Wang Y et al (2020) Clinical significance of Ki67 and circulating tumor cells with an epithelial-mesenchymal transition phenotype in non-small cell lung cancer. Am J Transl Res 12:2916–2928

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Panigrahi M, Kumar D, Vooturi S, Dilip Madigubba (2018) MIB index as predictor of recurrence in sporadic vestibular schwannomas. World Neurosurg 120:e1203–e1207. https://doi.org/10.1016/j.wneu.2018.09.039

    Article  PubMed  Google Scholar 

  62. Nakatomi H, Jacob JT, Carlson ML et al (2017) Long-term risk of recurrence and regrowth after gross-total and subtotal resection of sporadic vestibular schwannoma. J Neurosurg. https://doi.org/10.3171/2016.11.JNS16498

    Article  PubMed  Google Scholar 

  63. Fabbris C, Gazzini L, Marchioni D et al (2020) Exclusive surgical treatment for vestibular schwannoma regrowth or recurrence: a meta-analysis of the literature. Clin Neurol Neurosurg 193:105769. https://doi.org/10.1016/j.clineuro.2020.105769

    Article  PubMed  Google Scholar 

  64. de Vries M, Briaire-de Bruijn I, Malessy MJA et al (2013) Tumor-associated macrophages are related to volumetric growth of vestibular schwannomas. Otol Neurotol 34:347–352. https://doi.org/10.1097/MAO.0b013e31827c9fbf

    Article  PubMed  Google Scholar 

  65. Huang Y, Feng Z (2013) The good and bad of microglia/macrophages: new hope in stroke therapeutics. Acta Pharmacol Sin 34:6–7. https://doi.org/10.1038/aps.2012.178

    CAS  Article  PubMed  Google Scholar 

  66. Kontorinis G, Crowther JA, Iliodromiti S et al (2016) Neutrophil to lymphocyte ratio as a predictive marker of vestibular schwannoma growth. Otol neurotol 37:580–585. https://doi.org/10.1097/MAO.0000000000001026

    Article  PubMed  Google Scholar 

  67. Ariyannur PS, Vikkath N, Pillai AB (2018) Cerebrospinal fluid hyaluronan and neurofibromatosis type 2. Cancer microenvironment 11:125–133. https://doi.org/10.1007/s12307-018-0216-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Yashar P, Zada G, Harris B, Giannotta SL (2012) Extent of resection and early postoperative outcomes following removal of cystic vestibular schwannomas: surgical experience over a decade and review of the literature. Neurosurg Focus FOC 33:E13. https://doi.org/10.3171/2012.7.FOCUS12206

    Article  Google Scholar 

  69. Piccirillo E, Wiet MR, Flanagan S et al (2009) Cystic vestibular schwannoma: classification, management, and facial nerve outcomes. Otol Neurotol. https://doi.org/10.1097/MAO.0b013e3181b04e18

    Article  PubMed  Google Scholar 

  70. Sinha S, Sharma BS (2008) Cystic acoustic neuromas: surgical outcome in a series of 58 patients. J Clin Neurosci 15:511–515. https://doi.org/10.1016/j.jocn.2007.01.007

    Article  PubMed  Google Scholar 

  71. Tali ET, Yuh WT, Nguyen HD et al (1993) Cystic acoustic schwannomas: MR characteristics. AJNR Am J Neuroradiol 14:1241–1247

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Fundová P, Charabi S, Tos M, Thomsen J (2000) Cystic vestibular schwannoma: surgical outcome. J Laryngol Otol 114:935–939. https://doi.org/10.1258/0022215001904653

    Article  PubMed  Google Scholar 

  73. Tang IP, Freeman SR, Rutherford SA et al (2014) Surgical outcomes in cystic vestibular schwannoma versus solid vestibular schwannoma. Otol Neurotol 35:1266–1270

    Article  Google Scholar 

  74. Kameyama S, Tanaka R, Honda Y et al (1994) The long-term growth rate of residual acoustic neurinomas. Acta Neurochir 129:127–130. https://doi.org/10.1007/BF01406491

    CAS  Article  PubMed  Google Scholar 

  75. Li J, Deng X, Ke D et al (2021) Risk factors for progression in vestibular schwannomas after incomplete resection: a single center retrospective study. Front Neurol. https://doi.org/10.3389/fneur.2021.778590

    Article  PubMed  PubMed Central  Google Scholar 

  76. Nutik SL, Babb MJ (2001) Determinants of tumor size and growth in vestibular schwannomas. J Neurosurg 94:922–926. https://doi.org/10.3171/jns.2001.94.6.0922

    CAS  Article  PubMed  Google Scholar 

  77. Sethi M, Borsetto D, Bance M et al (2021) Determinants of vestibular schwannoma growth. Otol neurotol 42:746–754. https://doi.org/10.1097/MAO.0000000000003043

    Article  PubMed  Google Scholar 

  78. Hadjipanayis CG, Carlson ML, Link MJ et al (2018) Congress of neurological surgeons systematic review and evidence-based guidelines on surgical resection for the treatment of patients with vestibular schwannomas. Neurosurgery. https://doi.org/10.1093/neuros/nyx512

    Article  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by AE, HN and AF.A. The first draft of the manuscript was written by AE, HN and AF.A. and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Andrew F. Alalade.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors have no personal, financial or institutional interest in any of the drugs, materials or devices described in this article.

Ethical approval

Not applicable for this systematic review.

Informed consent

Not applicable for this systematic review

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 310 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Egiz, A., Nautiyal, H., Alalade, A.F. et al. Evaluating growth trends of residual sporadic vestibular schwannomas: a systematic review and meta-analysis. J Neurooncol 159, 135–150 (2022). https://doi.org/10.1007/s11060-022-04051-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-022-04051-2

Keywords

  • Vestibular schwannoma
  • Recurrence
  • Surgery
  • Incomplete resection
  • Meta-analysis