Skip to main content

Advertisement

Log in

Diaph3 underlines tumor cell heterogeneity in glioblastoma with implications for treatment modalities resistance

  • Research
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Introduction

Glioblastoma (GBM) is the most aggressive central nervous system (CNS) tumor with astrocytic differentiation. The growth pattern of GBM mimics that of the precursor cell migration during the fetal development of the brain. Diaphanous homolog (Diaph3) has been established to play a role in both CNS maturation and cancer progression as it is required both for cell migration and division. Furthermore, Diaph3 has been shown to play a role in malignant disease progression through hyperactivation of the EGFR/MEK/ERK in loss of expression and its overexpression correlating to hyperactivity of the mTOR pathway, both of which are with a well-established role in GBM. Herein, we aimed at establishing the diagnostic role of Diaph3 immunohistochemistry expression patterns in GBM and their possible implications for molecular response to different therapies.

Materials and methods

The study utilized a retrospective nonclinical approach. Results of Diaph3 immunohistochemical expression were compared to healthy controls and reactive gliosis and statistically analyzed for correlation with neuroradiological tumor parameters and patient survival.

Results

Healthy controls showed individual weakly positive cells, while reactive gliosis controls showed a strong expression in astrocytic projections. GBM samples showed a heterogeneous positive reaction to Diaph3, mean number of positive cells 62.66%, median 61.5, range 12–96%. Areas of migrating cells showed a strong diffuse cytoplasmic reaction. Cells located in the tumor core and those in areas of submeningeal aggregation had no antibody expression. Statistical analysis revealed no correlation with tumor size or patient survival.

Conclusion

The different expression pattern of Diaph3 in healthy controls, reactive gliosis and GBM shows promise as a clinical differentiating marker. Despite Diaph3 expression not correlating with survival and tumor size in GBM, there is an accumulating body of evidence that Diaph3 correlates with mTOR activity and can thus be used as a predictor for response to rapamycin and taxanes, clinical studies of which have shown promising, if mixed results in GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23:1231–1251

    Article  CAS  PubMed  Google Scholar 

  2. Brat DJ, Aldape K, Colman H et al (2020) cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol 139:603–608

    Article  PubMed  PubMed Central  Google Scholar 

  3. Volovetz J, Berezovsky AD, Alban T et al (2020) Identifying conserved molecular targets required for cell migration of glioblastoma cancer stem cells. Cell Death Dis 11:1–12

    Article  CAS  Google Scholar 

  4. Tamimi AF, Juweid M (2017) Epidemiology and Outcome of Glioblastoma. In: De Vleeschouwer S (ed) Glioblastoma. Codon Publications, Brisbane, pp 143–153

    Chapter  Google Scholar 

  5. Hara A, Kanayama T, Noguchi K et al (2019) Treatment strategies based on histological targets against invasive and resistant glioblastoma. J Oncol 2019:1–10

    Article  CAS  Google Scholar 

  6. Gillespie S, Monje M (2018) An active role for neurons in glioma progression: making sense of Scherer’s structures. Neuro Oncol 20:1292–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wesseling P, Kros JM, Jeuken JWM (2011) The pathological diagnosis of diffuse gliomas: towards a smart synthesis of microscopic and molecular information in a multidisciplinary context. Diagnostic Histopathol 17:486–494

    Article  Google Scholar 

  8. Habberstad AH, Habberstad AH, Lind-Landström T, Torp SH (2012) The histopathological spectrum of primary human glioblastomas with relations to tumour biology. J Clin Exp Pathol 2:1–7

    Article  Google Scholar 

  9. Zepecki JP, Snyder KM, Moreno MM et al (2018) Regulation of human glioma cell migration, tumor growth, and stemness gene expression using a Lck targeted inhibitor. Oncogene 38:1734–1750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Munthe S, Sørensen MD, Thomassen M et al (2016) Migrating glioma cells express stem cell markers and give rise to new tumors upon xenografting. J Neurooncol 130:53–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Holland EC (2000) Glioblastoma multiforme: the terminator. Proc Natl Acad Sci USA 97:6242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang CH, Rockhill JK, Mrugala M et al (2009) Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model. Cancer Res 69:9133–9140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boaro A, Harary M, Chukwueke U, Valdes Quevedo P, Smith TR (2019) The neurocognitive evaluation in the butterfly glioma patient. A systematic review. Interdiscip Neurosurg 18:100512

    Google Scholar 

  14. Tunthanathip T, Ratanalert S, Sae-Heng S, Oearsakul T (2017) Butterfly tumor of the corpus callosum: Clinical characteristics, diagnosis, and survival analysis. J Neurosci Rural Pract 8:S57

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cacho-Díaz B, García-Botello DR, Wegman-Ostrosky T, Reyes-Soto G, Ortiz-Sánchez E, Herrera-Montalvo LA (2020) Tumor microenvironment differences between primary tumor and brain metastases. J Transl Med 18:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  16. Patnayak R, Jena A, Vijaylaxmi B et al (2013) Metastasis in central nervous system: Clinicopathological study with review of literature in a tertiary care center in South India. South Asian J Cancer 2:245–249

    Article  PubMed  PubMed Central  Google Scholar 

  17. Damiani D, Goffinet AM, Alberts A, Tissir F (2016) Lack of Diaph3 relaxes the spindle checkpoint causing the loss of neural progenitors. Nat Commun 7:1–12

    Article  CAS  Google Scholar 

  18. DIAPH3 Gene - GeneCards | DIAP3 Protein | DIAP3 Antibody (2022) Available from: https://www.genecards.org/cgi-bin/carddisp.pl?gene=DIAPH3. Accessed Jan 15 2022.

  19. Kawabata Galbraith K, Kengaku M (2019) Multiple roles of the actin and microtubule-regulating formins in the developing brain. Neurosci Res 138:59–69

    Article  CAS  PubMed  Google Scholar 

  20. Dong L, Li Z, Xue L et al (2018) DIAPH3 promoted the growth, migration and metastasis of hepatocellular carcinoma cells by activating beta-catenin/TCF signaling. Mol Cell Biochem 438:183–190

    Article  CAS  PubMed  Google Scholar 

  21. Hager MH, Morley S, Bielenberg DR et al (2012) DIAPH3 governs the cellular transition to the amoeboid tumour phenotype. EMBO Mol Med 4:743–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Morley S, You S, Pollan S et al (2015) Regulation of microtubule dynamics by DIAPH3 influences amoeboid tumor cell mechanics and sensitivity to taxanes. Sci Reports 5:1–16

    Google Scholar 

  23. Pettee KM, Becker KN, Alberts AS, Reinard KA, Schroeder JL, Eisenmann KM (2019) Targeting the mDia formin-assembled cytoskeleton is an effective anti-invasion strategy in adult high-grade glioma patient-derived neurospheres. Cancers 11:392

    Article  CAS  PubMed Central  Google Scholar 

  24. Arden JD, Lavik KI, Rubinic KA et al (2015) Small-molecule agonists of mammalian diaphanous–related (mDia) formins reveal an effective glioblastoma anti-invasion strategy. Mol Biol Cell 26:3704–3718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chalkia D, Nikolaidis N, Makalowski W, Klein J, Nei M (2008) Origins and evolution of the formin multigene family that is involved in the formation of actin filaments. Mol Biol Evol 25:2717–2733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Evangelista M, Zigmond S, Boone C (2003) Formins: signaling effectors for assembly and polarization of actin filaments. J Cell Sci 116:2603–2611

    Article  CAS  PubMed  Google Scholar 

  27. Schönichen A, Geyer M (2010) Fifteen formins for an actin filament: A molecular view on the regulation of human formins. Biochim Biophys Acta - Mol Cell Res 1803:152–163

    Article  CAS  Google Scholar 

  28. Labat-de-hoz L, Alonso MA (2021) Formins in human disease. Cells 10:2554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Palander O, Lam A, Collins RF, Moraes TJ, Trimble WS (2021) Nonredundant roles of DIAPHs in primary ciliogenesis. J Biol Chem 296:100680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lau EOC, Damiani D, Chehade G et al (2021) DIAPH3 deficiency links microtubules to mitotic errors, defective neurogenesis, and brain dysfunction. Elife 10:e61974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vorstman JAS, Van Daalen E, Jalali GR et al (2011) A double hit implicates DIAPH3 as an autism risk gene. Mol Psychiatry 16:442–451

    Article  CAS  PubMed  Google Scholar 

  32. Shun WJ, Jiang J, Jun CB, Wang K, Ling TY, Xhua L (2021) Plasticity of cancer cell invasion: Patterns and mechanisms. Transl Oncol 14:100899

    Article  Google Scholar 

  33. Wan L, Zhu J, Wu Q (2021) Knockdown of DIAPH3 inhibits the proliferation of cervical cancer cells through inactivating mTOR signaling pathway. J Oncol 2021:1–16

    Google Scholar 

  34. Read RD, Cavenee WK, Furnari FB, Thomas JB (2009) A drosophila model for EGFR-Ras and PI3K-dependent human glioma. PLoS Genet 5:e1000374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gulati N, Karsy M, Albert L, Murali R, Jhanwar-Uniyal M (2009) Involvement of mTORC1 and mTORC2 in regulation of glioblastoma multiforme growth and motility. Int J Oncol 35:731–740

    CAS  PubMed  Google Scholar 

  36. Liberti MV, Locasale JW (2016) The warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41:211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mecca C, Giambanco I, Donato R, Arcuri C (2018) Targeting mTOR in glioblastoma: rationale and preclinical/clinical evidence. Dis Markers 2018:9230479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Tanaka K, Babic I, Nathanson D et al (2011) Oncogenic EGFR signaling activates an mTORC2-NF-κB pathway that promotes chemotherapy resistance. Cancer Discov 1:524–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chandrika G, Natesh K, Ranade D, Chugh A, Shastry P (2016) Suppression of the invasive potential of Glioblastoma cells by mTOR inhibitors involves modulation of NFκB and PKC-α signaling. Sci Reports 6:1–14

    Google Scholar 

  40. Heimberger AB, Wang E, McGary EC et al (2005) Mechanisms of action of rapamycin in gliomas. Neuro Oncol 7:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zimmerman MA, Wilkison S, Qi Q, Chen G, Li PA (2020) Mitochondrial dysfunction contributes to rapamycininduced apoptosis of human glioblastoma cells - a synergistic effect with temozolomide. Int J Med Sci 17:2831–2843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arcella A, Biagioni F, Antonietta Oliva M et al (2013) Rapamycin inhibits the growth of glioblastoma. Brain Res 1495:37–51

    Article  CAS  PubMed  Google Scholar 

  43. Cloughesy TF, Yoshimoto K, Nghiemphu P et al (2008) Antitumor activity of rapamycin in a phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med 5:e8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Li M, Zhou Y, Chen C et al (2019) Efficacy and safety of mTOR inhibitors (rapamycin and its analogues) for tuberous sclerosis complex: a meta-analysis. Orphanet J Rare Dis 14:1–9

    Article  Google Scholar 

Download references

Funding

The study was funded by the Medical University – Varna Scientific fund, grant number 19010 and the National scientific fund—young researchers, grant number 2990/07.06.2021.

Author information

Authors and Affiliations

Authors

Contributions

GSS conceptualized the study, analyzed preliminary findings, performed the statistical analysis and wrote the initial draft with figure design; EL collected patient data, revised findings and statistical results; RG analyzed preliminary findings and assisted with statistical analysis and figure design; DD and LP assisted in patient selection and data analysis; AK and BDI assisted in statistical analysis and finding interpretation; PG revised the findings, manuscript and figures as well as approved the final version of the manuscript; all althours have read and approve the final version of the manuscript

Corresponding author

Correspondence to George S. Stoyanov.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Ethical approval

All procedures included in the study adhered to the ethical standards of the Declaration of Helsinki 1964 and its seventh revision from 2013. The study was approved by the Committee on Ethics for Scientific Research, Medical University—Varna "Prof. Dr. Paraskev Stoyanov," —Protocol no. 93/21.05.2020.

Conflict of interest

The authors declare no conflicting interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoyanov, G.S., Lyutfi, E., Georgieva, R. et al. Diaph3 underlines tumor cell heterogeneity in glioblastoma with implications for treatment modalities resistance. J Neurooncol 157, 523–531 (2022). https://doi.org/10.1007/s11060-022-03996-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-022-03996-8

Keywords

Navigation