Skip to main content
Log in

Gyriform infiltration as imaging biomarker for molecular glioblastomas

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Background

Molecular glioblastomas (i.e. without the histological but with the molecular characteristics of IDH-wild-type glioblastoma) frequently lack contrast enhancement, which can wrongly lead to suspect a lower-grade glioma. Herein, we aimed to assess the diagnostic value of gyriform infiltration as an imaging marker for molecular glioblastomas.

Methods

Two independent investigators reviewed the MRI scans from patients with newly diagnosed gliomas for the presence of a gyriform infiltration defined as an elective cortical hypersignal on MRI FLAIR sequence. Diagnostic test performance of this sign for the diagnosis of molecular glioblastoma were calculated.

Results

A total of 426 patients were included, corresponding to 31 molecular glioblastoma, 294 IDH-wild-type glioblastoma, 50 IDH-mutant astrocytoma, and 51 IDH-mutant 1p19q-codeleted oligodendroglioma. A gyriform infiltration was observed in 16/31 (52%) molecular glioblastoma, 40/294 (14%) IDH-wild-type glioblastoma, and none of the IDH-mutant glioma. All the 56 gyriform-infiltration-positive tumors were IDH-wild-type and all but two had a TERT promoter mutation. The inter-rater agreement was good (κ = 0.69, p < 0.001). The sensitivity, specificity, positive predictive value and negative predictive value of the presence of a gyriform infiltration for the diagnosis of molecular glioblastoma were 52%, 90%, 29%, 96%, respectively. The median overall survival was better for gyriform-infiltration-negative patients compared to gyriform-infiltration-positive patients in the whole series and in patients with non-enhancing lesions (n = 95) (25.6 vs 16.9 months, p = 0.005 and 20.2 months vs not reached, p < 0.001).

Conclusion

Gyriform infiltration is a specific imaging marker of molecular glioblastomas that can help distinguishing these tumors from IDH-mutant lower-grade gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23:1231–1251. https://doi.org/10.1093/neuonc/noab106

    Article  CAS  PubMed  Google Scholar 

  2. Louis DN, Wesseling P, Aldape K et al (2020) cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol 30:844–856. https://doi.org/10.1111/bpa.12832

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stichel D, Ebrahimi A, Reuss D et al (2018) Distribution of EGFR amplification, combined chromosome 7 gain and chromosome 10 loss, and TERT promoter mutation in brain tumors and their potential for the reclassification of IDHwt astrocytoma to glioblastoma. Acta Neuropathol 136:793–803. https://doi.org/10.1007/s00401-018-1905-0

    Article  PubMed  Google Scholar 

  4. Izquierdo C, Barritault M, Poncet D et al (2019) Radiological characteristics and natural history of adult IDH-wildtype astrocytomas with TERT promoter mutations. Neurosurgery 85:E448–E456. https://doi.org/10.1093/neuros/nyy513

    Article  PubMed  Google Scholar 

  5. Metellus P, Coulibaly B, Colin C et al (2010) Absence of IDH mutation identifies a novel radiologic and molecular subtype of WHO grade II gliomas with dismal prognosis. Acta Neuropathol 120:719–729. https://doi.org/10.1007/s00401-010-0777-8

    Article  PubMed  Google Scholar 

  6. Juratli TA, Tummala SS, Riedl A et al (2019) Radiographic assessment of contrast enhancement and T2/FLAIR mismatch sign in lower grade gliomas: correlation with molecular groups. J Neurooncol 141:327–335. https://doi.org/10.1007/s11060-018-03034-6

    Article  CAS  PubMed  Google Scholar 

  7. van Lent DI, van Baarsen KM, Snijders TJ, Robe PAJT (2020) Radiological differences between subtypes of WHO 2016 grade II-III gliomas: a systematic review and meta-analysis. Neuro Oncol Adv 2:vdaa04

    Google Scholar 

  8. Choi C, Ganji SK, DeBerardinis RJ et al (2012) 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med 18:624–629. https://doi.org/10.1038/nm.2682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Broen MPG, Smits M, Wijnenga MMJ et al (2018) The T2-FLAIR mismatch sign as an imaging marker for non-enhancing IDH-mutant, 1p/19q-intact lower-grade glioma: a validation study. Neuro Oncol 20:1393–1399. https://doi.org/10.1093/neuonc/noy048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Patel SH, Poisson LM, Brat DJ et al (2017) T2-FLAIR mismatch, an imaging biomarker for IDH and 1p/19q status in lower-grade gliomas: A TCGA/TCIA project. Clin Cancer Res 23:6078–6085. https://doi.org/10.1158/1078-0432.CCR-17-0560

    Article  CAS  PubMed  Google Scholar 

  11. Foltyn M, Nieto Taborda KN, Neuberger U et al (2020) T2/FLAIR-mismatch sign for noninvasive detection of IDH-mutant 1p/19q non-codeleted gliomas: validity and pathophysiology. Neuro Oncol Adv 2:vdaa004

    Article  Google Scholar 

  12. Meyronet D, Esteban-Mader M, Bonnet C et al (2017) Characteristics of H3 K27M-mutant gliomas in adults. Neuro Oncol 19:1127–1134. https://doi.org/10.1093/neuonc/now274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Labussière M, Boisselier B, Mokhtari K et al (2014) Combined analysis of TERT, EGFR, and IDH status defines distinct prognostic glioblastoma classes. Neurology 83:1200–1206. https://doi.org/10.1212/WNL.0000000000000814

    Article  CAS  PubMed  Google Scholar 

  14. Simon M, Hosen I, Gousias K et al (2015) TERT promoter mutations: a novel independent prognostic factor in primary glioblastomas. Neuro Oncol 17:45–52. https://doi.org/10.1093/neuonc/nou158

    Article  CAS  PubMed  Google Scholar 

  15. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  PubMed  Google Scholar 

  16. Tesileanu CMS, Dirven L, Wijnenga MMJ et al (2020) Survival of diffuse astrocytic glioma, IDH1/2 wildtype, with molecular features of glioblastoma, WHO grade IV: a confirmation of the cIMPACT-now criteria. Neuro Oncol 22:515–523. https://doi.org/10.1093/neuonc/noz200

    Article  CAS  PubMed  Google Scholar 

  17. Lee D, Riestenberg RA, Haskell-Mendoza A, Bloch O (2021) Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV: a single-institution case series and review. J Neurooncol 152:89–98. https://doi.org/10.1007/s11060-020-03677-4

    Article  CAS  PubMed  Google Scholar 

  18. Aoki K, Nakamura H, Suzuki H et al (2018) Prognostic relevance of genetic alterations in diffuse lower-grade gliomas. Neuro Oncol 20:66–77. https://doi.org/10.1093/neuonc/nox132

    Article  CAS  PubMed  Google Scholar 

  19. Lasocki A, Gaillard F, Tacey MA et al (2016) The incidence and significance of multicentric noncontrast-enhancing lesions distant from a histologically-proven glioblastoma. J Neurooncol 129:471–478. https://doi.org/10.1007/s11060-016-2193-y

    Article  CAS  PubMed  Google Scholar 

  20. Benouaich-Amiel A, Khasminsky V, Gal O et al (2021) Multicentric non-enhancing lesions in glioblastoma: a retrospective study. J Clin Neurosci 85:20–26. https://doi.org/10.1016/j.jocn.2020.11.050

    Article  CAS  PubMed  Google Scholar 

  21. Lasocki A, Gaillard F, Tacey M et al (2016) Incidence and prognostic significance of non-enhancing cortical signal abnormality in glioblastoma. J Med Imaging Radiat Oncol 60:66–73. https://doi.org/10.1111/1754-9485.12421

    Article  PubMed  Google Scholar 

  22. Patel SH, Batchala PP, Muttikkal TJE et al (2021) Fluid attenuation in non-contrast-enhancing tumor (nCET): an MRI marker for isocitrate dehydrogenase (IDH) mutation in glioblastoma. J Neurooncol 152:523–531. https://doi.org/10.1007/s11060-021-03720-y

    Article  CAS  PubMed  Google Scholar 

  23. Lasocki A, Gaillard F, Tacey M et al (2018) Morphologic patterns of noncontrast-enhancing tumor in glioblastoma correlate with IDH1 mutation status and patient survival. J Clin Neurosci 47:168–173. https://doi.org/10.1016/j.jocn.2017.09.007

    Article  PubMed  Google Scholar 

  24. Milano MT, Okunieff P, Donatello RS et al (2010) Patterns and timing of recurrence after temozolomide-based chemoradiation for glioblastoma. Int J Radiat Oncol Biol Phys 78:1147–1155. https://doi.org/10.1016/j.ijrobp.2009.09.018

    Article  CAS  PubMed  Google Scholar 

  25. Brandes AA, Tosoni A, Franceschi E et al (2009) Recurrence pattern after temozolomide concomitant with and adjuvant to radiotherapy in newly diagnosed patients with glioblastoma: correlation With MGMT promoter methylation status. J Clin Oncol 27:1275–1279. https://doi.org/10.1200/JCO.2008.19.4969

    Article  CAS  PubMed  Google Scholar 

  26. Lahmi L, Idbaih A, Rivin Del Campo E et al (2019) Whole brain radiotherapy with concurrent temozolomide in multifocal and/or multicentric newly diagnosed glioblastoma. J Clin Neurosci 68:39–44. https://doi.org/10.1016/j.jocn.2019.07.065

    Article  CAS  PubMed  Google Scholar 

  27. Showalter TN, Andrel J, Andrews DW et al (2007) Multifocal glioblastoma multiforme: prognostic factors and patterns of progression. Int J Radiat Oncol Biol Phys 69:820–824. https://doi.org/10.1016/j.ijrobp.2007.03.045

    Article  PubMed  Google Scholar 

  28. Scherer HJ (1938) Structural development in gliomas. Am J Cancer 34:333–351

    Google Scholar 

Download references

Acknowledgements

We thank Helene Boyer (from DRCI department of HCL) for the review of this manuscript (English writing).

Funding

This analysis was not funded.

Author information

Authors and Affiliations

Authors

Contributions

The corresponding author certifies that all authors have made substantial contributions to all of the following: EM, FD: conception and design of the study, analysis and interpretation of data, acquisition of data, MRI analysis, EM: statistical analysis, All authors: drafting the article or revising it critically for important intellectual content, All authors: Final approval of the version to be submitted.

Corresponding author

Correspondence to Emmanuel Mesny.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1767 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesny, E., Barritault, M., Izquierdo, C. et al. Gyriform infiltration as imaging biomarker for molecular glioblastomas. J Neurooncol 157, 511–521 (2022). https://doi.org/10.1007/s11060-022-03995-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-022-03995-9

Keywords

Navigation