Skip to main content
Log in

Temozolomide-induced myelotoxicity and single nucleotide polymorphisms in the MGMT gene in patients with adult diffuse glioma: a single-institutional pharmacogenetic study

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Nearly 10% of patients with adult diffuse glioma develop clinically significant myelotoxicity while on temozolomide (TMZ) leading to treatment interruptions. This study aimed to assess single nucleotide polymorphisms (SNPs) in the O6-methylguanine-DNA methyltransferase (MGMT) gene in adults with biopsy-proven diffuse glioma who develop TMZ-induced myelotoxicity and correlate their presence with severity and duration of such toxicity.

Methods

This study assessed 33 adults treated with TMZ for diffuse glioma who developed ≥ grade 2 thrombocytopenia and/or ≥ grade 3 neutropenia. Genomic DNA was extracted from peripheral blood cells for MGMT SNP analysis after written informed consent. TMZ-induced severe myelotoxicity (≥ grade 3) was correlated with three specified SNPs commonly seen in the MGMT gene (L84F, I143V/K178R) using chi-square test or Fischer’s exact test as appropriate.

Results

Of the 33 adults, 24 (72.7%) experienced ≥ grade 3 thrombocytopenia and/or neutropenia, while 9 (27.3%) developed grade 2 thrombocytopenia only. The variant T allele of L84F was expressed in 28.7% (19/66) of analyzed alleles, which was substantially higher than previously reported for South Asian ancestry. The variant G allele of I143V/K178R was expressed in 9.3% (6/64) of analyzed alleles. Of which 3 patients showed statistically significant association with prolonged myelosuppression for > 2 months (p = 0.03). No significant correlation was established between the mentioned SNPs and severe myelotoxicity.

Conclusions

There is substantially higher frequency of variant T allele (L84F) in Indian patients than previously reported for South Asians. The presence of specific SNPs in the MGMT gene correlates with prolonged duration but not severity of TMZ-induced myelotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets analysed during the current study can be made available from the corresponding author on reasonable request.

References

  1. Ostrom Q, Cioffi G, Waite K et al (2021) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro Oncol 23(Supplement_3):iii1–iii105. https://doi.org/10.1093/neuonc/noab200

    Article  PubMed  Google Scholar 

  2. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization Classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  3. Redjal N, Venteicher AS, Dang D et al (2021) Guidelines in the management of CNS tumors. J Neuro-oncol 151:345–359. https://doi.org/10.1007/s11060-020-03530-8

    Article  Google Scholar 

  4. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. https://doi.org/10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  5. Ziu M, Kim BYS, Jiang W et al (2020) The role of radiation therapy in treatment of adults with newly diagnosed glioblastoma multiforme: a systematic review and clinical practice guideline update. J Neuro-oncol 150:215–267. https://doi.org/10.1007/s11060-020-03612-7

    Article  Google Scholar 

  6. Kaina B, Christmann M, Naumann S et al (2007) MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst) 6(8):1079–1099. https://doi.org/10.1016/j.dnarep.2007.03.008

    Article  CAS  Google Scholar 

  7. Mojas N, Lopes M, Jiricny J (2007) Mismatch repair-dependent processing of methylation damage gives rise to persistent single-stranded gaps in newly replicated DNA. Genes Dev 21(24):3342–3355. https://doi.org/10.1101/gad.455407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Natarajan AT, Vermeulen S, Darroudi F et al (1992) Chromosomal localization of human O6-methylguanine-DNA methyltransferase (MGMT) gene by in situ hybridization. Mutagenesis 7(1):83–85. https://doi.org/10.1093/mutage/7.1.83

    Article  CAS  PubMed  Google Scholar 

  9. Pegg AE, Fang Q, Loktionova NA (2007) Human variants of O6-alkylguanine-DNA alkyltransferase. DNA Repair (Amst) 6(8):1071–1078. https://doi.org/10.1016/j.dnarep.2007.03.012

    Article  CAS  Google Scholar 

  10. Bugni JM, Han J, Tsai MS et al (2007) Genetic association and functional studies of major polymorphic variants of MGMT. DNA Repair (Amst) 6(8):1116–1126. https://doi.org/10.1016/j.dnarep.2007.03.023

    Article  CAS  Google Scholar 

  11. Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003. https://doi.org/10.1056/NEJMoa043331

    Article  CAS  PubMed  Google Scholar 

  12. Olson RA, Brastinos PK, Palma DA (2011) Prognostic and predictive value of epigenetic silencing of MGMT in patients with high grade glioma: systematic review and meta-analysis. J Neuro-oncol 105:125–135. https://doi.org/10.1007/s11060-011-0594-5

    Article  Google Scholar 

  13. Sabharwal A, Waters R, Danson S et al (2011) Predicting the myelotoxicity of chemotherapy: the use of pretreatment O6-methylguanine-DNA methyltransferase determination in peripheral blood mononuclear cells. Melanoma Res 21(6):502–508. https://doi.org/10.1097/CMR.0b013e32832ccd58

    Article  CAS  PubMed  Google Scholar 

  14. Sheng Z, Kang M, Wang H (2018) The potential role of MGMT rs12917 polymorphism in cancer risk: an updated pooling analysis with 21010 cases and 34018 controls. Biosci Rep 38:BSR20180942. https://doi.org/10.1042/BSR20180942

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fang Q, Loktionova NA, Moschel RC et al (2008) Differential inactivation of polymorphic variants of human O6-alkylguanine-DNA alkyltransferase. Biochem Pharmacol 75(3):618–626. https://doi.org/10.1016/j.bcp.2007.09.022

    Article  CAS  PubMed  Google Scholar 

  16. Wang HW, Xu ZK, Song Y et al (2017) Correlations of MGMT genetic polymorphisms with temozolomide resistance and prognosis of patients with malignant gliomas: a population-based study in China. Cancer Gene Ther 24(5):215–220. https://doi.org/10.1038/cgt.2017.7

    Article  CAS  PubMed  Google Scholar 

  17. Armstrong TS, Cao Y, Scheurer ME et al (2009) Risk analysis of severe myelotoxicity with temozolomide: the effects of clinical and genetic factors. Neuro Oncol 11(6):825–832. https://doi.org/10.1215/15228517-2008-120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gupta T, Mohanty S, Moiyadi A et al (2013) Factors predicting temozolomide induced clinically significant acute hematologic toxicity in patients with high-grade gliomas: a clinical audit. Clin Neurol Neurosurg 115:1814–1819. https://doi.org/10.1016/j.clineuro.2013.05.015

    Article  PubMed  Google Scholar 

  19. Robins HI, Eickhoff J, Gilbert MR et al (2019) The association between BMI and BSA–temozolomide-induced myelosuppression toxicities: a correlative analysis of NRG oncology RTOG 0525. Neurooncol Pract 6(6):473–478. https://doi.org/10.1093/nop/npz006

    Article  PubMed  PubMed Central  Google Scholar 

  20. Garcia CR, Myint ZW, Jayswal R et al (2021) Hematological adverse events in the management of glioblastoma. J Neuro-oncol. https://doi.org/10.1007/s11060-021-03891-8

    Article  Google Scholar 

  21. National Institutes of Health, National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0. November 27, 2017. https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/CTCAE_v5_Quick Reference_8.5x11.pdf Accessed May 2021

  22. Tyagi AK, Khoshbeen MB, Curtis PH et al (2018) Development and validation of an allele-specific PCR assay for genotyping a promoter and exonic single nucleotide polymorphisms of MGMT gene. J Biol Methods 5(2):e92

    Article  Google Scholar 

  23. Shi C, Wang X, Diao C et al (2021) Toxicities and associated factors in patients receiving temozolomide-containing regimens: a 12-year analysis of hospital data. Drug Des Devel Ther. 15:2151–2159. https://doi.org/10.2147/DDDT.S305792

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jalali R, Datta D (2008) Prospective analysis of incidence of central nervous tumors presenting in a tertiary cancer hospital from India. J Neuro-oncol 87(1):111–114. https://doi.org/10.1007/s11060-007-9487-z

    Article  Google Scholar 

  25. Arulananda S, Lynam J, Sem Liew M et al (2018) Clinical correlates of severe thrombocytopenia from temozolomide in glioblastoma patients. Intern Med J 48(10):1206–1214. https://doi.org/10.1111/imj.14000

    Article  CAS  PubMed  Google Scholar 

  26. Lashkari HP, Saso S, Moreno L et al (2011) Using different schedules of Temozolomide to treat low grade gliomas: systematic review of their efficacy and toxicity. J Neuro-oncol 105:135–147. https://doi.org/10.1007/s11060-011-0657-7

    Article  CAS  Google Scholar 

  27. Hertz DL, Glatz A, Pasternak AL et al (2018) Integration of germline pharmacogenetics into a tumor sequencing program. JCO Precis Oncol. https://doi.org/10.1200/po.18.00011

    Article  PubMed  PubMed Central  Google Scholar 

  28. Robert J, Le Morvan V, Smith D et al (2005) Predicting drug response and toxicity based on gene polymorphisms. Crit Rev Oncol Hematol 54(3):171–196. https://doi.org/10.1016/j.critrevonc.2005.01.005

    Article  PubMed  Google Scholar 

  29. Armstrong TS, Gilbert MR, Bondy M et al (2017) OS05.6 Final risk model for temozolomide (TMZ)-myelotoxicity in patients with Glioblastoma treated on NRG Oncology’s RTOG 0825. Neuro Oncol 19(Suppl 3):iii10. https://doi.org/10.1093/neuonc/nox036.033

    Article  PubMed Central  Google Scholar 

  30. Lombardi G, Rumiato E, Bertorelle R et al (2015) Clinical and genetic factors associated with severe hematological toxicity in glioblastoma patients during radiation plus temozolomide treatment: a prospective study. Am J Clin Oncol 38(5):514–519. https://doi.org/10.1097/COC.0b013e3182a790ea

    Article  CAS  PubMed  Google Scholar 

  31. Munisamy M, Munisamy S, Kumar JP et al (2021) Pharmacogenetics of ATP binding cassette transporter MDR1 (1236C>T) gene polymorphism with glioma patients receiving Temozolomide-based chemoradiation therapy in Indian population. Pharmacogenomics J 21(2):262–272. https://doi.org/10.1038/s41397-021-00206-y

    Article  CAS  PubMed  Google Scholar 

  32. Sylvester RK, Steen P, Tate JM et al (2011) Temozolomide-induced severe myelosuppression: analysis of clinically associated polymorphisms in two patients. Anticancer Drugs 22(1):104–110. https://doi.org/10.1097/CAD.0b013e3283407e9f

    Article  CAS  PubMed  Google Scholar 

  33. Altinoz MA, Elmaci I, Bolukbasi FH et al (2017) MGMT gene variants, temozolomide myelotoxicity and glioma risk. A concise literature survey including an illustrative case. J Chemother 29(4):238–244. https://doi.org/10.1080/1120009X.2017.1312752

    Article  CAS  PubMed  Google Scholar 

  34. Saito T, Sugiyama K, Hama S et al (2018) Prognostic importance of temozolomide-induced neutropenia in glioblastoma, IDH-wildtype patients. Neurosurg Rev 41:621–628. https://doi.org/10.1007/s10143-017-0903-3

    Article  PubMed  Google Scholar 

  35. Williams M, Liu ZW, Woolf D et al (2012) Change in platelet levels during radiotherapy with concurrent and adjuvant temozolomide for the treatment of glioblastoma: a novel prognostic factor for survival. J Cancer Res Clin Oncol 138:1683–1688. https://doi.org/10.1007/s00432-012-1243-x

    Article  CAS  PubMed  Google Scholar 

  36. Yovino S, Grossman SA (2012) Severity, etiology and possible consequences of treatment-related lymphopenia in patients with newly diagnosed high-grade gliomas. CNS Oncol 1(2):149–154. https://doi.org/10.2217/cns.12.14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grossman SA, Ellsworth S, Campian J et al (2015) Survival in patients with severe lymphopenia following treatment with radiation and chemotherapy for newly diagnosed solid tumors. J Natl Compr Canc Netw 13(10):1225–1231. https://doi.org/10.6004/jnccn.2015.0151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zawlik I, Vacarella S, Kita D et al (2009) Promoter methylation and polymorphisms of the MGMT gene in glioblastomas: a population-based study. Neuroepidemiology 32(1):21–29. https://doi.org/10.1159/000170088

    Article  PubMed  Google Scholar 

  39. Moreno V, Gemignani F, Landi S et al (2006) Polymorphisms in genes and nucleotide and base excision repair: risk and prognosis of colorectal cancer. Clin Cancer Res 12:2101–2108. https://doi.org/10.1158/1078-0432.CCR-05-1363

    Article  CAS  PubMed  Google Scholar 

  40. The 1000 Genomes Project Consortium (2015) A global reference for human genetic variation. Nature 526:68–74. https://doi.org/10.1038/nature15393

    Article  CAS  Google Scholar 

  41. Howe KL, Achuthan P, Allen J et al (2021) Ensembl 2021. Nucleic Acids Res 49(1):884–891. https://doi.org/10.1093/nar/gkaa942

    Article  CAS  Google Scholar 

Download references

Funding

All SNP analysis in the study was done through financial support by Sarin Lab, ACTREC,TMC.

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: TG. Study conduct (clinical): PM, AC, SE, VP, TG. Study conduct (genotyping): PK, PK, RS. Data extraction and analysis: PM, AC, PK, TG. Manuscript—initial draft: PM. Editing and revision of manuscript: AC, AD, TG. Final approval: All authors.

Corresponding author

Correspondence to Tejpal Gupta.

Ethics declarations

Conflict of interest

None of the authors have any conflicts of interest to declare.

Ethical approval

The study is registered with Clinical Trials Registry of India (CTRI-2020/07/026317) and was duly approved by the Institutional Ethics Committee that functions in accordance with the Declaration of Helsinki. All SNP analysis in the study was done through financial support from the Department of Atomic Energy, Government of India, to Sarin Lab, Advanced Centre for Treatment Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moitra, P., Chatterjee, A., Kota, P.K. et al. Temozolomide-induced myelotoxicity and single nucleotide polymorphisms in the MGMT gene in patients with adult diffuse glioma: a single-institutional pharmacogenetic study. J Neurooncol 156, 625–634 (2022). https://doi.org/10.1007/s11060-022-03944-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-022-03944-6

Keywords

Navigation