Skip to main content
Log in

PD-L1 tumor expression is associated with poor prognosis and systemic immunosuppression in glioblastoma

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Glioblastoma is the most common primary malignant brain tumor in the adult, whose grim prognosis largely relates to the absence of effective treatment targets. Given its success in other cancers, immunotherapy has been trialed in glioblastoma and failed to demonstrate the expected benefit. Importantly, these disappointing results highlight the importance of understanding the unique and transforming biology of glioblastoma and its microenvironment. Our goal was to evaluate and characterize the expression of PD-L1 through immunohistochemistry in a large glioblastoma cohort. We further studied PD-L1 expression-associated prognosis and its correlation to systemic and neuropathological parameters.

Methods

A series of 352 glioblastoma specimens (313 initial resection, 39 matched recurrences) was collected, with a detailed characterization of tumor neuropathological characteristics, including the presence, density and location of tumor infiltrating lymphocytes (TIL). Two hematological markers, absolute lymphocyte count and neutrophil–lymphocyte ratio (NLR), were used to analyze and correlate with systemic inflammation and immunosuppression. Immunohistochemistry was performed to evaluate PD-L1 expression.

Results

Membranous PD-L1 expression was identified in 31% (98/313) of newly diagnosed and 46% (18/39) of matched recurrent tumors. TIL were found in 26% (82/313) of primary tumors and both density and location were found to be significantly associated with PD-L1 expression (p < 0.001). Interestingly, PD-L1 expressing tumors had more frequently areas with sarcomatous differentiation (p < 0.001) and were significantly associated with lower lymphocyte count (p = 0.018) and higher NLR ratio (p = 0.004) upon diagnosis. Importantly, PD-L1 expression was an independent poor prognostic marker in our cohort.

Conclusion

Taken together, our data points to a putative role for PD-L1 expression in glioblastoma biology, which correlates to poor patient overall survival, as well as with a general systemic inflammatory status and immunosuppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, Barnholtz-Sloan JS (2019) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol 21(Suppl 5):v1–v100

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wen PY, Weller M, Lee EQ, Alexander BM, Barnholtz-Sloan JS, Barthel FP, Batchelor TT, Bindra RS, Chang SM, Chiocca EA et al (2020) Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol 22(8):1073–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dunn GP, Rinne ML, Wykosky J, Genovese G, Quayle SN, Dunn IF, Agarwalla PK, Chheda MG, Campos B, Wang A et al (2012) Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev 26(8):756–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chongsathidkiet P, Jackson C, Koyama S, Loebel F, Cui X, Farber SH, Woroniecka K, Elsamadicy AA, Dechant CA, Kemeny HR et al (2018) Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat Med 24(9):1459–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Woroniecka K, Chongsathidkiet P, Rhodin K, Kemeny H, Dechant C, Farber SH, Elsamadicy AA, Cui X, Koyama S, Jackson C et al (2018) T-cell exhaustion signatures vary with tumor type and are severe in glioblastoma. Clin Cancer Res 24(17):4175–4186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Woroniecka K, Fecci PE (2018) T-cell exhaustion in glioblastoma. Oncotarget 9(82):35287–35288

    Article  PubMed  PubMed Central  Google Scholar 

  7. Grossman SA, Ye XB, Lesser G, Sloan A, Carraway H, Desideri S, Piantadosi S, Consortium NC (2011) Immunosuppression in patients with high-grade gliomas treated with radiation and temozolomide. Clin Cancer Res 17(16):5473–5480

    Article  Google Scholar 

  8. Rahman R, Catalano PJ, Arvold ND, Aizer AA, Weiss SE, Pinnell N, Horvath MC, Christianson L, Reardon DA, Lee EQ et al (2016) Chemoradiation-related lymphopenia is common among glioblastoma patients and is associated with worse progression-free and overall survival. Int J Radiat Oncol 96(2):E123–E123

    Article  Google Scholar 

  9. Aggarwal BB, Vijayalekshmi RV, Sung B (2009) Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res 15(2):425–430

    Article  CAS  PubMed  Google Scholar 

  10. O’Callaghan DS, O’Donnell D, O’Connell F, O’Byrne KJ (2010) The role of inflammation in the pathogenesis of non-small cell lung cancer. J Thorac Oncol 5(12):2024–2036

    Article  PubMed  Google Scholar 

  11. Liu D, Huang Y, Li L, Song J, Zhang L, Li W (2017) High neutrophil-to-lymphocyte ratios confer poor prognoses in patients with small cell lung cancer. BMC Cancer 17(1):882

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhou Y, Wei Q, Fan J, Cheng S, Ding W, Hua Z (2018) Prognostic role of the neutrophil-to-lymphocyte ratio in pancreatic cancer: a meta-analysis containing 8252 patients. Clin Chim Acta 479:181–189

    Article  CAS  PubMed  Google Scholar 

  13. Lopes M, Carvalho B, Vaz R, Linhares P (2018) Influence of neutrophil-lymphocyte ratio in prognosis of glioblastoma multiforme. J Neuro-Oncol 136(1):173–180

    Article  Google Scholar 

  14. Lei YY, Li YT, Hu QL, Wang J, Sui AX (2019) Prognostic impact of neutrophil-to-lymphocyte ratio in gliomas: a systematic review and meta-analysis. World J Surg Oncol 17(1):152

    Article  PubMed  PubMed Central  Google Scholar 

  15. Freeman GJ, Long AJ, Iwai Y, Latchman Y, Bourque K, Brown JA, Boussiotis VA, Dorfman DM, Chernova T, Nishimura H et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7-family member leads to negative regulation of lymphocyte activation. Blood 96(11):810a–811a

    Google Scholar 

  16. Kuryk L, Bertinato L, Staniszewska M, Pancer K, Wieczorek M, Salmaso S, Caliceti P, Garofalo M (2020) From conventional therapies to immunotherapy: melanoma treatment in review. Cancers 12(10).

  17. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan JD, Wong P, Ho TS et al (2015) Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen RL, Janjigian YY, Barron DA, Zehir A, Jordan EJ, Omuro A et al (2019) Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet 51(2):202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357(6349):409–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Topalian SL, Drake CG, Pardoll DM (2012) Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 24(2):207–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sampson JH, Omuro AMP, Preusser M, Lim M, Butowski NA, Cloughesy TF, Strauss LC, Latek RR, Paliwal P, Weller M et al (2016) A randomized, phase 3, open-label study of nivolumab versus temozolomide (TMZ) in combination with radiotherapy (RT) in adult patients (pts) with newly diagnosed, O-6-methylguanine DNA methyltransferase (MGMT)-unmethylated glioblastoma (GBM): CheckMate-498. J Clin Oncol 34(15_suppl):TPS2079-TPS2079.

  22. Bristol Myers Squibb Announces Update on Phase 3 CheckMate -548 Trial Evaluating Patients with Newly Diagnosed MGMT-Methylated Glioblastoma Multiforme. https://www.businesswire.com/news/home/20201223005025/en/

  23. Reardon DA, Brandes AA, Omuro A, Mulholland P, Lim M, Wick A, Baehring J, Ahluwalia MS, Roth P, Bahr O et al (2020) Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma the checkmate 143 phase 3 randomized clinical trial. Jama Oncol 6(7):1003–1010

    Article  PubMed  Google Scholar 

  24. Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, Cachola KE, Murray JC, Tihan T, Jensen MC et al (2007) Loss of tumor suppressor PTEN function increases B7–H1 expression and immunoresistance in glioma. Nat Med 13(1):84–88

    Article  CAS  PubMed  Google Scholar 

  25. Rutledge WC, Kong J, Gao JJ, Gutman DA, Cooper LAD, Appin C, Park Y, Scarpace L, Mikkelsen T, Cohen ML et al (2013) Tumor-infiltrating lymphocytes in glioblastoma are associated with specific genomic alterations and related to transcriptional class. Clin Cancer Res 19(18):4951–4960

    Article  CAS  PubMed  Google Scholar 

  26. Zhao JF, Chen AX, Gartrell RD, Silverman AM, Aparicio L, Chu T, Bordbar D, Shan D, Samanamud J, Mahajan A et al (2019) Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma (vol 25, pg 462, 2019). Nat Med 25(6):1022–1022

    Article  CAS  PubMed  Google Scholar 

  27. Dahlin AM, Henriksson ML, Van Guelpen B, Stenling R, Oberg A, Rutegard J, Palmqvist R (2011) Colorectal cancer prognosis depends on T-cell infiltration and molecular characteristics of the tumor. Modern Pathol 24(5):671–682

    Article  CAS  Google Scholar 

  28. Berghoff AS, Kiesel B, Widhalm G, Rajky O, Ricken G, Wohrer A, Dieckmann K, Filipits M, Brandstetter A, Weller M et al (2015) Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol 17(8):1064–1075

    Article  CAS  PubMed  Google Scholar 

  29. Holzl D, Hutarew G, Zellinger B, Schlicker HU, Schwartz C, Winkler PA, Sotlar K, Kraus TFJ (2021) Integrated analysis of programmed cell death ligand 1 expression reveals increased levels in high-grade glioma. J Cancer Res Clin 147(8):2271–2280

    Article  Google Scholar 

  30. Topalian SL, Taube JM, Pardoll DM (2020) Neoadjuvant checkpoint blockade for cancer immunotherapy. Science 367(6477).

  31. Zhang JY, Yan YY, Li JJ, Adhikari R, Fu LW (2020) PD-1/PD-L1 based combinational cancer therapy: icing on the cake. Front Pharmacol 11:722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Garber ST, Hashimoto Y, Weathers SP, Xiu J, Gatalica Z, Verhaak RG, Zhou S, Fuller GN, Khasraw M, de Groot J et al (2016) Immune checkpoint blockade as a potential therapeutic target: surveying CNS malignancies. Neuro Oncol 18(10):1357–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xue S, Hu M, Li P, Ma J, Xie L, Teng F, Zhu Y, Fan B, Mu D, Yu J (2017) Relationship between expression of PD-L1 and tumor angiogenesis, proliferation, and invasion in glioma. Oncotarget 8(30):49702–49712

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang Y, Pan C, Wang J, Cao J, Liu Y, Wang Y, Zhang L (2017) Genetic and immune features of resectable malignant brainstem gliomas. Oncotarget 8(47):82571–82582

    Article  PubMed  PubMed Central  Google Scholar 

  35. Berghoff AS, Kiesel B, Widhalm G, Wilhelm D, Rajky O, Kurscheid S, Kresl P, Wohrer A, Marosi C, Hegi ME et al (2017) Correlation of immune phenotype with IDH mutation in diffuse glioma. Neuro Oncol 19(11):1460–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hodges TR, Ott M, Xiu J, Gatalica Z, Swensen J, Zhou S, Huse JT, de Groot J, Li S, Overwijk WW et al (2017) Mutational burden, immune checkpoint expression, and mismatch repair in glioma: implications for immune checkpoint immunotherapy. Neuro Oncol 19(8):1047–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Heiland DH, Haaker G, Delev D, Mercas B, Masalha W, Heynckes S, Gabelein A, Pfeifer D, Carro MS, Weyerbrock A et al (2017) Comprehensive analysis of PD-L1 expression in glioblastoma multiforme. Oncotarget 8(26):42214–42225

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lee KS, Lee K, Yun S, Moon S, Park Y, Han JH, Kim CY, Lee HS, Choe G (2018) Prognostic relevance of programmed cell death ligand 1 expression in glioblastoma. J Neurooncol 136(3):453–461

    Article  CAS  PubMed  Google Scholar 

  39. Han J, Hong Y, Lee YS (2017) PD-L1 expression and combined status of PD-L1/PD-1-positive tumor infiltrating mononuclear cell density predict prognosis in glioblastoma patients. J Pathol Transl Med 51(1):40–48

    Article  PubMed  Google Scholar 

  40. Heynckes S, Gaebelein A, Haaker G, Grauvogel J, Franco P, Mader I, Carro MS, Prinz M, Delev D, Schnell O et al (2017) Expression differences of programmed death ligand 1 in de-novo and recurrent glioblastoma multiforme. Oncotarget 8(43):74170–74177

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liu Y, Carlsson R, Ambjorn M, Hasan M, Badn W, Darabi A, Siesjo P, Issazadeh-Navikas S (2013) PD-L1 expression by neurons nearby tumors indicates better prognosis in glioblastoma patients. J Neurosci 33(35):14231–14245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miyazaki T, Ishikawa E, Matsuda M, Akutsu H, Osuka S, Sakamoto N, Takano S, Yamamoto T, Tsuboi K, Matsumura A (2017) Assessment of PD-1 positive cells on initial and secondary resected tumor specimens of newly diagnosed glioblastoma and its implications on patient outcome. J Neurooncol 133(2):277–285

    Article  CAS  PubMed  Google Scholar 

  43. Wang Z, Zhang C, Liu X, Wang Z, Sun L, Li G, Liang J, Hu H, Liu Y, Zhang W et al (2016) Molecular and clinical characterization of PD-L1 expression at transcriptional level via 976 samples of brain glioma. Oncoimmunology 5(11):e1196310

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wilmotte R, Burkhardt K, Kindler V, Belkouch MC, Dussex G, Tribolet N, Walker PR, Dietrich PY (2005) B7-homolog 1 expression by human glioma: a new mechanism of immune evasion. NeuroReport 16(10):1081–1085

    Article  CAS  PubMed  Google Scholar 

  45. Wintterle S, Schreiner B, Mitsdoerffer M, Schneider D, Chen L, Meyermann R, Weller M, Wiendl H (2003) Expression of the B7-related molecule B7–H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res 63(21):7462–7467

    CAS  PubMed  Google Scholar 

  46. Xiu J, Piccioni D, Juarez T, Pingle SC, Hu J, Rudnick J, Fink K, Spetzler DB, Maney T, Ghazalpour A et al (2016) Multi-platform molecular profiling of a large cohort of glioblastomas reveals potential therapeutic strategies. Oncotarget 7(16):21556–21569

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zeng J, Zhang XK, Chen HD, Zhong ZH, Wu QL, Lin SX (2016) Expression of programmed cell death-ligand 1 and its correlation with clinical outcomes in gliomas. Oncotarget 7(8):8944–8955

    Article  PubMed  PubMed Central  Google Scholar 

  48. Derer A, Spiljar M, Bäumler M, Hecht M, Fietkau R, Frey B, Gaipl US (2016) Chemoradiation increases PD-L1 expression in certain melanoma and glioblastoma cells. Front Immunol 7:610

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nduom EK, Wei J, Yaghi NK, Huang N, Kong LY, Gabrusiewicz K, Ling X, Zhou S, Ivan C, Chen JQ et al (2016) PD-L1 expression and prognostic impact in glioblastoma. Neuro Oncol 18(2):195–205

    Article  CAS  PubMed  Google Scholar 

  50. Pratt D, Dominah G, Lobel G, Obungu A, Lynes J, Sanchez V, Adamstein N, Wang X, Edwards NA, Wu T et al (2019) Programmed death ligand 1 Is a negative prognostic marker in recurrent isocitrate dehydrogenase-wildtype glioblastoma. Neurosurgery 85(2):280–289

    Article  PubMed  Google Scholar 

  51. Doucette T, Rao G, Rao A, Shen L, Aldape K, Wei J, Dziurzynski K, Gilbert M, Heimberger AB (2013) Immune heterogeneity of glioblastoma subtypes: extrapolation from the cancer genome atlas. Cancer Immunol Res 1(2):112–122

    Article  CAS  PubMed  Google Scholar 

  52. Klemm F, Maas RR, Bowman RL, Kornete M, Soukup K, Nassiri S, Brouland JP, Iacobuzio-Donahue CA, Brennan C, Tabar V et al (2020) Interrogation of the microenvironmental landscape in brain tumors reveals disease-specific alterations of immune cells. Cell 181(7):1643-1660 e1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Martinez-Lage M, Lynch TM, Bi Y, Cocito C, Way GP, Pal S, Haller J, Yan RE, Ziober A, Nguyen A et al (2019) Immune landscapes associated with different glioblastoma molecular subtypes. Acta Neuropathol Commun 7(1):203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kaffes I, Szulzewsky F, Chen Z, Herting CJ, Gabanic B, Velázquez Vega JE, Shelton J, Switchenko JM, Ross JL, McSwain LF et al (2019) Human Mesenchymal glioblastomas are characterized by an increased immune cell presence compared to Proneural and Classical tumors. Oncoimmunology 8(11):e1655360

    Article  PubMed  PubMed Central  Google Scholar 

  55. Liu C, Zhang Z, Ping Y, Qin G, Zhang K, Maimela NR, Huang L, Yang S, Zhang Y (2020) Comprehensive analysis of PD-1 gene expression, immune characteristics and prognostic significance in 1396 glioma patients. Cancer Manag Res 12:4399–4410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ricklefs FL, Alayo Q, Krenzlin H, Mahmoud AB, Speranza MC, Nakashima H, Hayes JL, Lee K, Balaj L, Passaro C et al (2018) Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles. Sci Adv 4(3):eaar2766.

  57. Grabowski MM, Sankey EW, Ryan KJ, Chongsathidkiet P, Lorrey SJ, Wilkinson DS, Fecci PE (2021) Immune suppression in gliomas. J Neurooncol 151(1):3–12

    Article  PubMed  Google Scholar 

  58. Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, Ostberg JR, Blanchard MS, Kilpatrick J, Simpson J et al (2016) Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med 375(26):2561–2569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chamberlain MC, Kim BT (2017) Nivolumab for patients with recurrent glioblastoma progressing on bevacizumab: a retrospective case series. J Neurooncol 133(3):561–569

    Article  CAS  PubMed  Google Scholar 

  60. Mantica M, Pritchard A, Lieberman F, Drappatz J (2018) Retrospective study of nivolumab for patients with recurrent high grade gliomas. J Neurooncol 139(3):625–631

    Article  CAS  PubMed  Google Scholar 

  61. Cloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH, Davidson TB, Wang AC, Ellingson BM, Rytlewski JA, Sanders CM et al (2019) Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med 25(3):477–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M, Berger A, Wind P et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964

    Article  CAS  PubMed  Google Scholar 

  63. Huh JW, Lee JH, Kim HR (2012) Prognostic significance of tumor-infiltrating lymphocytes for patients with colorectal cancer. Archiv Surgery (Chicago, Ill: 1960) 147(4):366–372.

  64. Galluzzi L, Chan TA, Kroemer G, Wolchok JD, López-Soto A (2018) The hallmarks of successful anticancer immunotherapy. Sci Transl Med 10(459).

  65. Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541(7637):321–330

    Article  CAS  PubMed  Google Scholar 

  66. Dunn GP, Dunn IF, Curry WT (2007) Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human glioma. Cancer Immun 7:12

    PubMed  PubMed Central  Google Scholar 

  67. Woroniecka KI, Rhodin KE, Chongsathidkiet P, Keith KA, Fecci PE (2018) T-cell dysfunction in glioblastoma: applying a new framework. Clin Cancer Res 24(16):3792–3802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dix AR, Brooks WH, Roszman TL, Morford LA (1999) Immune defects observed in patients with primary malignant brain tumors. J Neuroimmunol 100(1–2):216–232

    Article  CAS  PubMed  Google Scholar 

  69. Kim WJ, Dho YS, Ock CY, Kim JW, Choi SH, Lee ST, Kim IH, Kim TM, Park CK (2019) Clinical observation of lymphopenia in patients with newly diagnosed glioblastoma. J Neurooncol 143(2):321–328

    Article  PubMed  Google Scholar 

Download references

Funding

This work was funded by FEDER—Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by FCT—Fundação para a Ciência e a Tecnologia/ Ministério da Ciência, Tecnologia e Ensino Superior under the project FCT/02/SAICT/2017/030625.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: CN and JP; Methodology: CN, DL, RT, FS; Formal analysis and investigation: CN, ASR, RT, FS, JP; Writing—original draft preparation: CN; Writing—review and editing: CN, ASR, RT, JR, FS, CF, JP; Supervision: JP.

Corresponding author

Correspondence to Joana Paredes.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This study has been performed in accordance with the national regulative law for the handling of biological specimens from tumor banks, being the samples exclusively available for research purposes in retrospective studies, as well as under the international Helsinki declaration. Moreover, it has been also approved by the ethics committee at Centro Hospitalar Universitário do Porto (2017-104 (093-DEFI/091-CES).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary File 1 (PDF 85 kb)

Supplementary File 2 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noronha, C., Ribeiro, A.S., Taipa, R. et al. PD-L1 tumor expression is associated with poor prognosis and systemic immunosuppression in glioblastoma. J Neurooncol 156, 453–464 (2022). https://doi.org/10.1007/s11060-021-03907-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-021-03907-3

Keywords

Navigation