Skip to main content

Glioblastoma cells potentiate the induction of the Th1-like profile in phosphoantigen-stimulated γδ T lymphocytes

Abstract

Purpose

γδ T lymphocytes are non-conventional T cells that participate in protective immunity and tumor surveillance. In healthy humans, the main subset of circulating γδ T cells express the TCRVγ9Vδ2. This subset responds to non-peptide prenyl-pyrophosphate antigens such as (E)-4-hydroxy-3-methyl-but-enyl pyrophosphate (HMBPP). This unique feature of Vγ9Vδ2 T cells makes them a candidate for anti-tumor immunotherapy. In this study, we investigated the response of HMBPP-activated Vγ9Vδ2 T lymphocytes to glioblastoma multiforme (GBM) cells.

Methods

Human purified γδ T cells were stimulated with HMBPP (1 µM) and incubated with GBM cells (U251, U373 and primary GBM cultures) or their conditioned medium. After overnight incubation, expression of CD69 and perforin was evaluated by flow cytometry and cytokines production by ELISA. As well, we performed a meta-analysis of transcriptomic data obtained from The Cancer Genome Atlas.

Results

HMBPP-stimulated γδ T cells cultured with GBM or its conditioned medium increased CD69, intracellular perforin, IFN-γ, and TNF-α production. A meta-analysis of transcriptomic data showed that GBM patients display better overall survival when mRNA TRGV9, the Vγ9 chain-encoding gene, was expressed in high levels. Moreover, its expression was higher in low-grade GBM compared to GBM. Interestingly, there was an association between γδ T cell infiltrates and TNF-α expression in the tumor microenvironment.

Conclusion

GBM cells enhanced Th1-like profile differentiation in phosphoantigen-stimulated γδ T cells. Our results reinforce data that have demonstrated the implication of Vγ9Vδ2 T cells in the control of GBM, and this knowledge is fundamental to the development of immunotherapeutic protocols to treat GBM based on γδ T cells.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The datasets generated for this study are available on request to the corresponding author. The datasets employed for the transcriptomic meta-analysis in GBM samples were obtained from The Cancer Genome Atlas (TCGA): https://portal.gdc.cancer.gov.

Abbreviations

GBM:

Glioblastoma multiforme

LGG:

Low grade glioblastoma

HMBPP:

(E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate

IFN-γ:

Interferon gamma

TNF-α:

Tumor necrosis factor alpha

HGEC:

Human glomerular endothelial cells

References

  1. Silantyev AS, Falzone L, Libra M, Gurina OI, Kardashova KSh, Nikolouzakis TK et al (2019) Current and future trends on diagnosis and prognosis of glioblastoma: from molecular biology to proteomics. Cells 8(8):863. https://doi.org/10.3390/cells8080863

    CAS  Article  PubMed Central  Google Scholar 

  2. Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS (2020) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro Oncol 22:iv1-96

    Article  Google Scholar 

  3. Lassman AB, Joanta-Gomez AE, Pan PC, Wick W (2020) Current usage of tumor treating fields for glioblastoma. Neurooncol Adv 2(1):vdaa069. https://doi.org/10.1093/noajnl/vdaa069

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ito N, Hasegawa R, Imaida K, Hirose M, Asamoto M, Shirai T (1995) Concepts in multistage carcinogenesis. Crit Rev Oncol Hematol 21(1–3):105–133. https://doi.org/10.1016/1040-8428(94)00169-3

    CAS  Article  PubMed  Google Scholar 

  5. Weenink B, French PJ, Sillevis Smitt PAE, Debets R, Geurts M (2020) Immunotherapy in glioblastoma: current shortcomings and future perspectives. Cancers (Basel) 2(3):751. https://doi.org/10.3390/cancers12030751

    CAS  Article  Google Scholar 

  6. Brenner MB, McLean J, Dialynas DP, Strominger JL, Smith JA, Owen FL et al (1986) Identification of a putative second T-cell receptor. Nature 322(6075):145–149

    CAS  Article  Google Scholar 

  7. Silva-Santos B, Serre K, Norell H (2015) γδ T cells in cancer. Nat Rev Immunol 15(11):683–691. https://doi.org/10.1038/nri3904

    CAS  Article  PubMed  Google Scholar 

  8. Puan KJ, Jin C, Wang H, Sarikonda G, Raker AM, Lee HK et al (2007) Preferential recognition of a microbial metabolite by human Vγ2Vδ2 T cells. Int Immunol 19(5):657–673. https://doi.org/10.1093/intimm/dxm031

    CAS  Article  PubMed  Google Scholar 

  9. Hsiao CH, Lin X, Barney RJ, Shippy RR, Li J, Vinogradova O et al (2014) Synthesis of a phosphoantigen prodrug that potently activates Vγ9Vδ2 T-lymphocytes. Chem Biol 21(8):945–954. https://doi.org/10.1016/j.chembiol.2014.06.006

    CAS  Article  PubMed  Google Scholar 

  10. Fisch P, Malkovsky M, Kovats S, Sturm E, Braakman E, Klein B et al (1990) Recognition by human Vγ9/Vδ2 T cells of a GroEL homolog on Daudi Burkitt’s lymphoma cells. Science 250(4985):1269–1273. https://doi.org/10.1126/science.1978758

    CAS  Article  PubMed  Google Scholar 

  11. Karunakaran MM, Willcox CR, Salim M, Paletta D, Fichtner AS, Noll A et al (2020) Butyrophilin-2A1 directly binds germline-encoded regions of the Vγ9Vδ2 TCR and is essential for phosphoantigen sensing. Immunity 52(3):487-498.e6. https://doi.org/10.1016/j.immuni.2020.02.014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Santolaria T, Robard M, Léger A, Catros V, Bonneville M, Scotet E (2013) Repeated systemic administrations of both aminobisphosphonates and human Vγ9Vδ2 T cells efficiently control tumor development in vivo. J Immunol 191(4):1993–2000. https://doi.org/10.4049/jimmunol.1300255

    CAS  Article  PubMed  Google Scholar 

  13. Gogoi D, Chiplunkar SV (2013) Targeting gamma delta T cells for cancer immunotherapy: bench to bedside. Indian J Med Res 138(5):755–761

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Polito VA, Cristantielli R, Weber G, Del Bufalo F, Belardinilli T, Arnone CM et al (2019) Universal ready-to-use immunotherapeutic approach for the treatment of cancer: expanded and activated polyclonal γδ memory T cells. Front Immunol 10:2717. https://doi.org/10.3389/fimmu.2019.02717

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Correia DV, Lopes AC, Silva-Santos B (2013) Tumor cell recognition by γδ T lymphocytes: T-cell receptor vs NK-cell receptors. OncoImmunology 2(1):e22892. https://doi.org/10.4161/onci.22892

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chitadze G, Lettau M, Luecke S, Wang T, Janssen O, Fürst D et al (2016) NKG2D- and T-cell receptor-dependent lysis of malignant glioma cell lines by human γδ T cells: modulation by temozolomide and A disintegrin and metalloproteases 10 and 17 inhibitors. OncoImmunology 5(4):e1093276. https://doi.org/10.1080/2162402X.2015.1093276

    CAS  Article  PubMed  Google Scholar 

  17. Friese MA, Platten M, Lutz SZ, Naumann U, Aulwurm S, Bischof F et al (2003) MICA/NKG2D-mediated immunogene therapy of experimental gliomas. Cancer Res 63(24):8996–9006

    CAS  PubMed  Google Scholar 

  18. Fisher JP, Heuijerjans J, Yan M, Gustafsson K, Anderson J (2014) γδ T cells for cancer immunotherapy: a systematic review of clinical trials. Oncoimmunology 3(1):e27572. https://doi.org/10.4161/onci.27572

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jarry U, Chauvin C, Joalland N, Léger A, Minault S, Robard M et al (2016) Stereotaxic administrations of allogeneic human Vγ9Vδ2 T cells efficiently control the development of human glioblastoma brain tumors. Oncoimmunology 5(6):e1168554. https://doi.org/10.1080/2162402X.2016.1168554

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Lo Presti E, Di Mitri R, Pizzolato G, Mocciaro F, Dieli F, Meraviglia S (2018) γδ cells and tumor microenvironment: a helpful or a dangerous liason? J Leukoc Biol 103(3):485–492. https://doi.org/10.1002/JLB.5MR0717-275RR

    CAS  Article  PubMed  Google Scholar 

  21. Fornara O, Odeberg J, Wolmer Solberg N, Tammik C, Skarman P, Peredo I et al (2015) Poor survival in glioblastoma patients is associated with early signs of immunosenescence in the CD4 T-cell compartment after surgery. Oncoimmunology 4(9):e1036211. https://doi.org/10.1080/2162402X.2015.1036211

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Bryant NL, Suarez-Cuervo C, Gillespie GY, Markert JM, Nabors LB, Meleth S et al (2009) Characterization and immunotherapeutic potential of γδ T-cells in patients with glioblastoma. Neuro Oncol 11(4):357–367. https://doi.org/10.1215/15228517-2008-111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang B, Shen R, Cheng S, Feng L (2019) Immune microenvironments differ in immune characteristics and outcome of glioblastoma multiforme. Cancer Med 8(6):2897–2907. https://doi.org/10.1002/cam4.2192

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Chabab G, Barjon C, Bonnefoy N, Lafont V (2020) Pro-tumor γδ T cells in human cancer: polarization, mechanisms of action, and implications for therapy. Front Immunol 11:2186. https://doi.org/10.3389/fimmu.2020.02186

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Fontana A, Bodmer S, Frei K, Malipiero U, Siepl C (1991) Expression of TGF-β2 in human glioblastoma: a role in resistance to immune rejection? Ciba Found Symp 157:232–238. https://doi.org/10.1002/9780470514061.ch15

    CAS  Article  PubMed  Google Scholar 

  26. Fu W, Wang W, Li H, Jiao Y, Huo R, Yan Z et al (2020) Single-cell atlas reveals complexity of the immunosuppressive microenvironment of initial and recurrent glioblastoma. Front Immunol 11:835. https://doi.org/10.3389/fimmu.2020.00835

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Peters C, Kabelitz D, Wesch D (2018) Regulatory functions of γδ T cells. Cell Mol Life Sci 75(12):2125–2135. https://doi.org/10.1007/s00018-018-2788-x

    CAS  Article  PubMed  Google Scholar 

  28. Lo Presti E, Pizzolato G, Corsale AM, Caccamo N, Sireci G, Dieli F et al (2018) γδ T Cells and tumor microenvironment: from immunosurveillance to tumor evasion. Front Immunol 9:1395. https://doi.org/10.3389/fimmu.2018.01395

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Amaral MM, Sacerdoti F, Jancic C, Repetto HA, Paton AW, Paton JC et al (2013) Action of shiga toxin type-2 and subtilase cytotoxin on human microvascular endothelial cells. PLoS ONE 8(7):e70431. https://doi.org/10.1371/journal.pone.0070431

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Fondello C, Agnetti L, Villaverde MS, Simian M, Glikin GC, Finocchiaro LME (2016) The combination of bleomycin with suicide or interferon-β gene transfer is able to efficiently eliminate human melanoma tumor initiating cells. Biomed Pharmacother 83:290–301. https://doi.org/10.1016/j.biopha.2016.06.038

    CAS  Article  PubMed  Google Scholar 

  31. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS et al (2017) TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res 77(21):e108–e110. https://doi.org/10.1158/0008-5472.CAN-17-0307

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q et al (2020) TIMER20 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res 48:W509–W514. https://doi.org/10.1093/nar/gkaa407

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Dunne MR, Mangan BA, Madrigal-Estebas L, Doherty DG (2010) Preferential Th1 cytokine profile of phosphoantigen-stimulated human Vγ9Vδ2 T cells. Mediators Inflamm 10(2010):704941. https://doi.org/10.1155/2010/704941

    CAS  Article  Google Scholar 

  34. Tsukaguchi K, de Lange B, Boom WH (1999) Differential regulation of IFN-γ, TNF-α, and IL-10 production by CD4+ αβTCR+ T cells and Vδ2+ γδ T cells in response to monocytes infected with Mycobacterium tuberculosis-H37Ra. Cell Immunol 194(1):12–20. https://doi.org/10.1006/cimm.1999.1497

    CAS  Article  PubMed  Google Scholar 

  35. Lee M, Park C, Woo J, Kim J, Kho I, Nam DH et al (2019) Preferential infiltration of unique Vγ9Jγ2-Vδ2 T cells into glioblastoma multiforme. Front Immunol 10:555. https://doi.org/10.3389/fimmu.2019.00555

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Glatzel A, Wesch D, Schiemann F, Brandt E, Janssen O, Kabelitz D (2002) Patterns of chemokine receptor expression on peripheral blood γ delta T lymphocytes: strong expression of CCR5 is a selective feature of Vδ2/V γ9 γδ T cells. J Immunol 168:4920–4929. https://doi.org/10.4049/jimmunol.168.10.4920

    CAS  Article  PubMed  Google Scholar 

  37. Tyler CJ, Doherty DG, Moser B, Eberl M (2015) Human Vγ9/Vδ2 T cells: innate adaptors of the immune system. Cell Immunol 296:10–21. https://doi.org/10.1016/j.cellimm.2015.01.008

    CAS  Article  PubMed  Google Scholar 

  38. Tokuyama H, Hagi T, Mattarollo SR, Morley J, Wang Q, So HF et al (2008) Vγ9Vδ2 T cell cytotoxicity against tumor cells is enhanced by monoclonal antibody drugs–rituximab and trastuzumab. Int J Cancer 122:2526–2534. https://doi.org/10.1002/ijc.23365

    CAS  Article  PubMed  Google Scholar 

  39. Dunne MR, Mangan BA, Madrigal-Estebas L, Doherty DG (2010) Preferential Th1 cytokine profile of phosphoantigen-stimulated human Vγ9Vδ2 T cells. Mediators Inflamm 2010:704941. https://doi.org/10.1155/2010/704941

    CAS  Article  PubMed  Google Scholar 

  40. Marcu-Malina V, Garelick D, Peshes-Yeloz N, Wohl A, Zach L, Nagar M et al (2016) Peripheral blood-derived, γ9δ2 t cell-enriched cell lines from glioblastoma multiforme patients exert anti-tumoral effects in vitro. J Biol Regul Homeost Agents 30(1):17–30

    CAS  PubMed  Google Scholar 

  41. Eiraku Y, Terunuma H, Yagi M, Deng X, Nicol AJ, Nieda M (2018) Dendritic cells cross-talk with tumour antigen-specific CD8 + T cells, Vγ9γδT cells and Vα24NKT cells in patients with glioblastoma multiforme and in healthy donors. Clin Exp Immunol 194(1):54–66. https://doi.org/10.1111/cei.13185

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Cimini E, Piacentini P, Sacchi A, Gioia C, Leone S, Lauro GM et al (2011) Zoledronic acid enhances Vδ2 T-lymphocyte antitumor response to human glioma cell lines. Int J Immunopathol Pharmacol 24(1):139–148. https://doi.org/10.1177/039463201102400116

    CAS  Article  PubMed  Google Scholar 

  43. Nakazawa T, Nakamura M, Matsuda R, Nishimura F, Park YS, Motoyama Y et al (2016) Antitumor effects of minodronate, a third-generation nitrogen-containing bisphosphonate, in synergy with γδ T cells in human glioblastoma in vitro and in vivo. J Neurooncol 129(2):231–241. https://doi.org/10.1007/s11060-016-2186-x

    CAS  Article  PubMed  Google Scholar 

  44. Denkert C, von Minckwitz G, Darb-Esfahani S, Lederer B, Heppner BI, Weber KE et al (2018) Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol 19:40–50. https://doi.org/10.1016/S1470-2045(17)30904-X

    Article  PubMed  Google Scholar 

  45. Zhao Y, Schaafsma E, Gorlov IP, Hernando E, Thomas NE, Shen R et al (2019) A leukocyte infiltration score defined by a gene signature predicts melanoma patient prognosis. Mol Cancer Res 17(1):109–119. https://doi.org/10.1158/1541-7786.MCR-18-0173

    CAS  Article  PubMed  Google Scholar 

  46. Aldape K, Zadeh G, Mansouri S, Reifenberger G, von Deimling A (2015) Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129(6):829–848. https://doi.org/10.1007/s00401-015-1432-1

    CAS  Article  PubMed  Google Scholar 

  47. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812. https://doi.org/10.1126/science.1164382

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SA, Fack F et al (2011) Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci USA 108(9):3749–3754. https://doi.org/10.1073/pnas.1014480108

    Article  PubMed  PubMed Central  Google Scholar 

  49. Talasila KM, Soentgerath A, Euskirchen P, Rosland GV, Wang J, Huszthy PC et al (2013) EGFR wild-type amplification and activation promote invasion and development of glioblastoma independent of angiogenesis. Acta Neuropathol 125(5):683–698. https://doi.org/10.1007/s00401-013-1101-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Marianela Candolfi for providing the U251 and U373 cell lines. This work was supported by Grant from Agencia Nacional de Promoción Científica y Tecnológica (Grant No. PICT2016/700), Consejo Nacional de Investigaciones Científicas y Técnicas and Fundación JA Roemmers. The authors thank Instituto Nacional del Cáncer for the financial support (fellowship to David A. Rosso).

Funding

This work was supported by grant from Agencia Nacional de Promoción Científica y Tecnológica (PICT2016/700) and Consejo Nacional de Investigaciones Científicas y Técnicas and Fundación JA Roemmers.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, experiments, and analysis of the data: DAR and MR. GBM sample obtention: JI. Bioinformatic analysis: NG. Contributions to the manuscript writing and revision: DAR, MR, CMS, IAK, and JVC. HGEC culture: FDG and MMA. Critical revision of the manuscript: ATR. Data interpretation and results discussion: GVS and CCJ. Experimental design and manuscript writing: CCJ. The authors read and approved the manuscript.

Corresponding author

Correspondence to Carolina C. Jancic.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

This study was reviewed and approved by the ethical committee of the Institutos de la Academia Nacional de Medicina, Instituto de Investigaciones Médicas A. Lanari, and Universidad de Buenos Aires. The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Consent for publication

No individual patient data is reported in this study.

Informed consent

Informed consent was obtained from participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 655 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rosso, D.A., Rosato, M., Iturrizaga, J. et al. Glioblastoma cells potentiate the induction of the Th1-like profile in phosphoantigen-stimulated γδ T lymphocytes. J Neurooncol 153, 403–415 (2021). https://doi.org/10.1007/s11060-021-03787-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-021-03787-7

Keywords

  • γδ T cells
  • Glioblastoma
  • Phosphoantigen
  • Th1-like profile