Silantyev AS, Falzone L, Libra M, Gurina OI, Kardashova KSh, Nikolouzakis TK et al (2019) Current and future trends on diagnosis and prognosis of glioblastoma: from molecular biology to proteomics. Cells 8(8):863. https://doi.org/10.3390/cells8080863
CAS
Article
PubMed Central
Google Scholar
Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS (2020) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro Oncol 22:iv1-96
Article
Google Scholar
Lassman AB, Joanta-Gomez AE, Pan PC, Wick W (2020) Current usage of tumor treating fields for glioblastoma. Neurooncol Adv 2(1):vdaa069. https://doi.org/10.1093/noajnl/vdaa069
Article
PubMed
PubMed Central
Google Scholar
Ito N, Hasegawa R, Imaida K, Hirose M, Asamoto M, Shirai T (1995) Concepts in multistage carcinogenesis. Crit Rev Oncol Hematol 21(1–3):105–133. https://doi.org/10.1016/1040-8428(94)00169-3
CAS
Article
PubMed
Google Scholar
Weenink B, French PJ, Sillevis Smitt PAE, Debets R, Geurts M (2020) Immunotherapy in glioblastoma: current shortcomings and future perspectives. Cancers (Basel) 2(3):751. https://doi.org/10.3390/cancers12030751
CAS
Article
Google Scholar
Brenner MB, McLean J, Dialynas DP, Strominger JL, Smith JA, Owen FL et al (1986) Identification of a putative second T-cell receptor. Nature 322(6075):145–149
CAS
Article
Google Scholar
Silva-Santos B, Serre K, Norell H (2015) γδ T cells in cancer. Nat Rev Immunol 15(11):683–691. https://doi.org/10.1038/nri3904
CAS
Article
PubMed
Google Scholar
Puan KJ, Jin C, Wang H, Sarikonda G, Raker AM, Lee HK et al (2007) Preferential recognition of a microbial metabolite by human Vγ2Vδ2 T cells. Int Immunol 19(5):657–673. https://doi.org/10.1093/intimm/dxm031
CAS
Article
PubMed
Google Scholar
Hsiao CH, Lin X, Barney RJ, Shippy RR, Li J, Vinogradova O et al (2014) Synthesis of a phosphoantigen prodrug that potently activates Vγ9Vδ2 T-lymphocytes. Chem Biol 21(8):945–954. https://doi.org/10.1016/j.chembiol.2014.06.006
CAS
Article
PubMed
Google Scholar
Fisch P, Malkovsky M, Kovats S, Sturm E, Braakman E, Klein B et al (1990) Recognition by human Vγ9/Vδ2 T cells of a GroEL homolog on Daudi Burkitt’s lymphoma cells. Science 250(4985):1269–1273. https://doi.org/10.1126/science.1978758
CAS
Article
PubMed
Google Scholar
Karunakaran MM, Willcox CR, Salim M, Paletta D, Fichtner AS, Noll A et al (2020) Butyrophilin-2A1 directly binds germline-encoded regions of the Vγ9Vδ2 TCR and is essential for phosphoantigen sensing. Immunity 52(3):487-498.e6. https://doi.org/10.1016/j.immuni.2020.02.014
CAS
Article
PubMed
PubMed Central
Google Scholar
Santolaria T, Robard M, Léger A, Catros V, Bonneville M, Scotet E (2013) Repeated systemic administrations of both aminobisphosphonates and human Vγ9Vδ2 T cells efficiently control tumor development in vivo. J Immunol 191(4):1993–2000. https://doi.org/10.4049/jimmunol.1300255
CAS
Article
PubMed
Google Scholar
Gogoi D, Chiplunkar SV (2013) Targeting gamma delta T cells for cancer immunotherapy: bench to bedside. Indian J Med Res 138(5):755–761
CAS
PubMed
PubMed Central
Google Scholar
Polito VA, Cristantielli R, Weber G, Del Bufalo F, Belardinilli T, Arnone CM et al (2019) Universal ready-to-use immunotherapeutic approach for the treatment of cancer: expanded and activated polyclonal γδ memory T cells. Front Immunol 10:2717. https://doi.org/10.3389/fimmu.2019.02717
CAS
Article
PubMed
PubMed Central
Google Scholar
Correia DV, Lopes AC, Silva-Santos B (2013) Tumor cell recognition by γδ T lymphocytes: T-cell receptor vs NK-cell receptors. OncoImmunology 2(1):e22892. https://doi.org/10.4161/onci.22892
Article
PubMed
PubMed Central
Google Scholar
Chitadze G, Lettau M, Luecke S, Wang T, Janssen O, Fürst D et al (2016) NKG2D- and T-cell receptor-dependent lysis of malignant glioma cell lines by human γδ T cells: modulation by temozolomide and A disintegrin and metalloproteases 10 and 17 inhibitors. OncoImmunology 5(4):e1093276. https://doi.org/10.1080/2162402X.2015.1093276
CAS
Article
PubMed
Google Scholar
Friese MA, Platten M, Lutz SZ, Naumann U, Aulwurm S, Bischof F et al (2003) MICA/NKG2D-mediated immunogene therapy of experimental gliomas. Cancer Res 63(24):8996–9006
CAS
PubMed
Google Scholar
Fisher JP, Heuijerjans J, Yan M, Gustafsson K, Anderson J (2014) γδ T cells for cancer immunotherapy: a systematic review of clinical trials. Oncoimmunology 3(1):e27572. https://doi.org/10.4161/onci.27572
Article
PubMed
PubMed Central
Google Scholar
Jarry U, Chauvin C, Joalland N, Léger A, Minault S, Robard M et al (2016) Stereotaxic administrations of allogeneic human Vγ9Vδ2 T cells efficiently control the development of human glioblastoma brain tumors. Oncoimmunology 5(6):e1168554. https://doi.org/10.1080/2162402X.2016.1168554
CAS
Article
PubMed
PubMed Central
Google Scholar
Lo Presti E, Di Mitri R, Pizzolato G, Mocciaro F, Dieli F, Meraviglia S (2018) γδ cells and tumor microenvironment: a helpful or a dangerous liason? J Leukoc Biol 103(3):485–492. https://doi.org/10.1002/JLB.5MR0717-275RR
CAS
Article
PubMed
Google Scholar
Fornara O, Odeberg J, Wolmer Solberg N, Tammik C, Skarman P, Peredo I et al (2015) Poor survival in glioblastoma patients is associated with early signs of immunosenescence in the CD4 T-cell compartment after surgery. Oncoimmunology 4(9):e1036211. https://doi.org/10.1080/2162402X.2015.1036211
CAS
Article
PubMed
PubMed Central
Google Scholar
Bryant NL, Suarez-Cuervo C, Gillespie GY, Markert JM, Nabors LB, Meleth S et al (2009) Characterization and immunotherapeutic potential of γδ T-cells in patients with glioblastoma. Neuro Oncol 11(4):357–367. https://doi.org/10.1215/15228517-2008-111
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang B, Shen R, Cheng S, Feng L (2019) Immune microenvironments differ in immune characteristics and outcome of glioblastoma multiforme. Cancer Med 8(6):2897–2907. https://doi.org/10.1002/cam4.2192
CAS
Article
PubMed
PubMed Central
Google Scholar
Chabab G, Barjon C, Bonnefoy N, Lafont V (2020) Pro-tumor γδ T cells in human cancer: polarization, mechanisms of action, and implications for therapy. Front Immunol 11:2186. https://doi.org/10.3389/fimmu.2020.02186
CAS
Article
PubMed
PubMed Central
Google Scholar
Fontana A, Bodmer S, Frei K, Malipiero U, Siepl C (1991) Expression of TGF-β2 in human glioblastoma: a role in resistance to immune rejection? Ciba Found Symp 157:232–238. https://doi.org/10.1002/9780470514061.ch15
CAS
Article
PubMed
Google Scholar
Fu W, Wang W, Li H, Jiao Y, Huo R, Yan Z et al (2020) Single-cell atlas reveals complexity of the immunosuppressive microenvironment of initial and recurrent glioblastoma. Front Immunol 11:835. https://doi.org/10.3389/fimmu.2020.00835
CAS
Article
PubMed
PubMed Central
Google Scholar
Peters C, Kabelitz D, Wesch D (2018) Regulatory functions of γδ T cells. Cell Mol Life Sci 75(12):2125–2135. https://doi.org/10.1007/s00018-018-2788-x
CAS
Article
PubMed
Google Scholar
Lo Presti E, Pizzolato G, Corsale AM, Caccamo N, Sireci G, Dieli F et al (2018) γδ T Cells and tumor microenvironment: from immunosurveillance to tumor evasion. Front Immunol 9:1395. https://doi.org/10.3389/fimmu.2018.01395
CAS
Article
PubMed
PubMed Central
Google Scholar
Amaral MM, Sacerdoti F, Jancic C, Repetto HA, Paton AW, Paton JC et al (2013) Action of shiga toxin type-2 and subtilase cytotoxin on human microvascular endothelial cells. PLoS ONE 8(7):e70431. https://doi.org/10.1371/journal.pone.0070431
CAS
Article
PubMed
PubMed Central
Google Scholar
Fondello C, Agnetti L, Villaverde MS, Simian M, Glikin GC, Finocchiaro LME (2016) The combination of bleomycin with suicide or interferon-β gene transfer is able to efficiently eliminate human melanoma tumor initiating cells. Biomed Pharmacother 83:290–301. https://doi.org/10.1016/j.biopha.2016.06.038
CAS
Article
PubMed
Google Scholar
Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS et al (2017) TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res 77(21):e108–e110. https://doi.org/10.1158/0008-5472.CAN-17-0307
CAS
Article
PubMed
PubMed Central
Google Scholar
Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q et al (2020) TIMER20 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res 48:W509–W514. https://doi.org/10.1093/nar/gkaa407
CAS
Article
PubMed
PubMed Central
Google Scholar
Dunne MR, Mangan BA, Madrigal-Estebas L, Doherty DG (2010) Preferential Th1 cytokine profile of phosphoantigen-stimulated human Vγ9Vδ2 T cells. Mediators Inflamm 10(2010):704941. https://doi.org/10.1155/2010/704941
CAS
Article
Google Scholar
Tsukaguchi K, de Lange B, Boom WH (1999) Differential regulation of IFN-γ, TNF-α, and IL-10 production by CD4+ αβTCR+ T cells and Vδ2+ γδ T cells in response to monocytes infected with Mycobacterium tuberculosis-H37Ra. Cell Immunol 194(1):12–20. https://doi.org/10.1006/cimm.1999.1497
CAS
Article
PubMed
Google Scholar
Lee M, Park C, Woo J, Kim J, Kho I, Nam DH et al (2019) Preferential infiltration of unique Vγ9Jγ2-Vδ2 T cells into glioblastoma multiforme. Front Immunol 10:555. https://doi.org/10.3389/fimmu.2019.00555
CAS
Article
PubMed
PubMed Central
Google Scholar
Glatzel A, Wesch D, Schiemann F, Brandt E, Janssen O, Kabelitz D (2002) Patterns of chemokine receptor expression on peripheral blood γ delta T lymphocytes: strong expression of CCR5 is a selective feature of Vδ2/V γ9 γδ T cells. J Immunol 168:4920–4929. https://doi.org/10.4049/jimmunol.168.10.4920
CAS
Article
PubMed
Google Scholar
Tyler CJ, Doherty DG, Moser B, Eberl M (2015) Human Vγ9/Vδ2 T cells: innate adaptors of the immune system. Cell Immunol 296:10–21. https://doi.org/10.1016/j.cellimm.2015.01.008
CAS
Article
PubMed
Google Scholar
Tokuyama H, Hagi T, Mattarollo SR, Morley J, Wang Q, So HF et al (2008) Vγ9Vδ2 T cell cytotoxicity against tumor cells is enhanced by monoclonal antibody drugs–rituximab and trastuzumab. Int J Cancer 122:2526–2534. https://doi.org/10.1002/ijc.23365
CAS
Article
PubMed
Google Scholar
Dunne MR, Mangan BA, Madrigal-Estebas L, Doherty DG (2010) Preferential Th1 cytokine profile of phosphoantigen-stimulated human Vγ9Vδ2 T cells. Mediators Inflamm 2010:704941. https://doi.org/10.1155/2010/704941
CAS
Article
PubMed
Google Scholar
Marcu-Malina V, Garelick D, Peshes-Yeloz N, Wohl A, Zach L, Nagar M et al (2016) Peripheral blood-derived, γ9δ2 t cell-enriched cell lines from glioblastoma multiforme patients exert anti-tumoral effects in vitro. J Biol Regul Homeost Agents 30(1):17–30
CAS
PubMed
Google Scholar
Eiraku Y, Terunuma H, Yagi M, Deng X, Nicol AJ, Nieda M (2018) Dendritic cells cross-talk with tumour antigen-specific CD8 + T cells, Vγ9γδT cells and Vα24NKT cells in patients with glioblastoma multiforme and in healthy donors. Clin Exp Immunol 194(1):54–66. https://doi.org/10.1111/cei.13185
CAS
Article
PubMed
PubMed Central
Google Scholar
Cimini E, Piacentini P, Sacchi A, Gioia C, Leone S, Lauro GM et al (2011) Zoledronic acid enhances Vδ2 T-lymphocyte antitumor response to human glioma cell lines. Int J Immunopathol Pharmacol 24(1):139–148. https://doi.org/10.1177/039463201102400116
CAS
Article
PubMed
Google Scholar
Nakazawa T, Nakamura M, Matsuda R, Nishimura F, Park YS, Motoyama Y et al (2016) Antitumor effects of minodronate, a third-generation nitrogen-containing bisphosphonate, in synergy with γδ T cells in human glioblastoma in vitro and in vivo. J Neurooncol 129(2):231–241. https://doi.org/10.1007/s11060-016-2186-x
CAS
Article
PubMed
Google Scholar
Denkert C, von Minckwitz G, Darb-Esfahani S, Lederer B, Heppner BI, Weber KE et al (2018) Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol 19:40–50. https://doi.org/10.1016/S1470-2045(17)30904-X
Article
PubMed
Google Scholar
Zhao Y, Schaafsma E, Gorlov IP, Hernando E, Thomas NE, Shen R et al (2019) A leukocyte infiltration score defined by a gene signature predicts melanoma patient prognosis. Mol Cancer Res 17(1):109–119. https://doi.org/10.1158/1541-7786.MCR-18-0173
CAS
Article
PubMed
Google Scholar
Aldape K, Zadeh G, Mansouri S, Reifenberger G, von Deimling A (2015) Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129(6):829–848. https://doi.org/10.1007/s00401-015-1432-1
CAS
Article
PubMed
Google Scholar
Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812. https://doi.org/10.1126/science.1164382
CAS
Article
PubMed
PubMed Central
Google Scholar
Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SA, Fack F et al (2011) Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci USA 108(9):3749–3754. https://doi.org/10.1073/pnas.1014480108
Article
PubMed
PubMed Central
Google Scholar
Talasila KM, Soentgerath A, Euskirchen P, Rosland GV, Wang J, Huszthy PC et al (2013) EGFR wild-type amplification and activation promote invasion and development of glioblastoma independent of angiogenesis. Acta Neuropathol 125(5):683–698. https://doi.org/10.1007/s00401-013-1101-1
CAS
Article
PubMed
PubMed Central
Google Scholar