Immunologic aspects of viral therapy for glioblastoma and implications for interactions with immunotherapies

Abstract

Introduction

The treatment for glioblastoma (GBM) has remained unchanged for the past decade, with only minimal improvements in patient survival. As a result, novel treatments are needed to combat this devastating disease. Immunotherapies are treatments that stimulate the immune system to attack tumor cells and can be either local or systemically delivered. Viral treatments can lead to direct tumor cell death through their natural lifecycle or through the delivery of a suicide gene, with the potential to generate an anti-tumor immune response, making them interesting candidates for combinatorial treatment with immunotherapy.

Methods

We review the current literature surrounding the interactions between oncolytic viruses and the immune system as well as the use of oncolytic viruses combined with immunotherapies for the treatment of GBM.

Results

Viral therapies have exhibited preclinical efficacy as single-agents and are being investigated in that manner in clinical trials. Oncolytic viruses have significant interactions with the immune system, although this can also vary depending on the strain of virus. Combinatorial treatments using both oncolytic viruses and immunotherapies have demonstrated promising preclinical findings.

Conclusions

Studies combining viral and immunotherapeutic treatment modalities have provided exciting results thus far and hold great promise for patients with GBM. Additional studies assessing the clinical efficacy of these treatments as well as improved preclinical modeling systems, safety mechanisms, and the balance between treatment efficacy and immune-mediated viral clearance should be considered.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N Engl J Med 352(10):987–996. https://doi.org/10.1056/NEJMoa043330

    CAS  Article  Google Scholar 

  2. 2.

    Ostrom QT, Cioffi G, Gittleman H et al (2019) CBTRUS Statistical Report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro-Oncology 21(5):v1–v100. https://doi.org/10.1093/neuonc/noz150

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Jain KK (2018) A critical overview of targeted therapies for glioblastoma. Front Oncol 8:419. https://doi.org/10.3389/fonc.2018.00419

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Young JS, Dayani F, Morshed RA, Okada H, Aghi MK (2019) Immunotherapy for high-grade gliomas: a clinical update and practical considerations for neurosurgeons. World Neurosurg 124:397–409. https://doi.org/10.1016/j.wneu.2018.12.222

    Article  Google Scholar 

  5. 5.

    Reardon DA, Brandes AA, Omuro A et al (2020) Effect of Nivolumab vs Bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 Phase 3 Randomized Clinical Trial. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2020.1024

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Montoya ML, Kasahara N, Okada H (2020) Introduction to immunotherapy for brain tumor patients: challenges and future perspectives. Neuro-Oncology Pract. https://doi.org/10.1093/NOP/NPAA007

    Article  Google Scholar 

  7. 7.

    Louveau A, Smirnov I, Keyes TJ et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337–341. https://doi.org/10.1038/nature14432

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Woroniecka KI, Rhodin KE, Chongsathidkiet P, Keith KA, Fecci PE (2018) T-Cell dysfunction in glioblastoma: applying a new framework. Clin Cancer Res 24(16):3792–3802. https://doi.org/10.1158/1078-0432.CCR-18-0047

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Aldape K, Zadeh G, Mansouri S, Reifenberger G, von Deimling A (2015) Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129(6):829–848. https://doi.org/10.1007/s00401-015-1432-1

    CAS  Article  Google Scholar 

  10. 10.

    D’Alessio A, Proietti G, Sica G, Scicchitano BM (2019) Pathological and molecular features of glioblastoma and its peritumoral tissue. Cancers (Basel). https://doi.org/10.3390/cancers11040469

    Article  Google Scholar 

  11. 11.

    Facoetti A, Nano R, Zelini P et al (2005) Human leukocyte antigen and antigen processing machinery component defects in astrocytic tumors. Clin Cancer Res 11(23):8304–8311. https://doi.org/10.1158/1078-0432.CCR-04-2588

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Cristescu R, Mogg R, Ayers M et al (2018) Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science (80-). https://doi.org/10.1126/science.aar3593

    Article  Google Scholar 

  13. 13.

    Samstein RM, Lee C-H, Shoushtari AN et al (2019) Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet 51(2):202–206. https://doi.org/10.1038/s41588-018-0312-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Nduom EK, Weller M, Heimberger AB (2015) Immunosuppressive mechanisms in glioblastoma. Neuro-Oncology 17 Suppl 7(Suppl 7):9–14. https://doi.org/10.1093/neuonc/nov151

    CAS  Article  Google Scholar 

  15. 15.

    Chongsathidkiet P, Jackson C, Koyama S et al (2018) Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat Med 24(9):1459–1468. https://doi.org/10.1038/s41591-018-0135-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Lim M, Xia Y, Bettegowda C, Weller M (2018) Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol 15(7):422–442. https://doi.org/10.1038/s41571-018-0003-5

    CAS  Article  Google Scholar 

  17. 17.

    Woroniecka K, Chongsathidkiet P, Rhodin K et al (2018) T-cell exhaustion signatures vary with tumor type and are severe in glioblastoma. Clin Cancer Res 24(17):4175–4186. https://doi.org/10.1158/1078-0432.CCR-17-1846

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Alban TJ, Alvarado AG, Sorensen MD et al (2018) Global immune fingerprinting in glioblastoma patient peripheral blood reveals immune-suppression signatures associated with prognosis. JCI insight. https://doi.org/10.1172/jci.insight.122264

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Ding AS, Routkevitch D, Jackson C, Lim M (2019) Targeting myeloid cells in combination treatments for glioma and other tumors. Front Immunol 10:1715. https://doi.org/10.3389/fimmu.2019.01715

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Russell SJ, Barber GN (2018) Oncolytic viruses as antigen-agnostic cancer vaccines. Cancer Cell 33(4):599–605. https://doi.org/10.1016/j.ccell.2018.03.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Lichty BD, Breitbach CJ, Stojdl DF, Bell JC (2014) Going viral with cancer immunotherapy. Nat Rev Cancer 14(8):559–567. https://doi.org/10.1038/nrc3770

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Ribas A, Dummer R, Puzanov I et al (2017) Oncolytic virotherapy promotes intratumoral T cell infiltration and improves Anti-PD-1 immunotherapy. Cell 170(6):1109-1119.e10. https://doi.org/10.1016/j.cell.2017.08.027

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Diaz RM, Galivo F, Kottke T et al (2007) Oncolytic immunovirotherapy for melanoma using vesicular stomatitis virus. Cancer Res 67(6):2840–2848. https://doi.org/10.1158/0008-5472.CAN-06-3974

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Kim JW, Miska J, Young JS et al (2017) A comparative study of replication-incompetent and -competent adenoviral therapy-mediated immune response in a Murine Glioma Model. Mol Ther - Oncolytics 5:97–104. https://doi.org/10.1016/j.omto.2017.05.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Kaufman HL, Bines SD (2010) OPTIM trial: a Phase III trial of an oncolytic herpes virus encoding GM-CSF for unresectable stage III or IV melanoma. Future Oncol 6(6):941–949. https://doi.org/10.2217/fon.10.66

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Lawler SE, Speranza MC, Cho CF, Chiocca EA (2017) Oncolytic viruses in cancer treatment a review. JAMA Oncol 3(6):841–849. https://doi.org/10.1001/jamaoncol.2016.2064

    Article  PubMed  Google Scholar 

  27. 27.

    Chiocca EA, Aguilar LK, Bell SD et al (2011) Phase IB study of gene-mediated cytotoxic immunotherapy adjuvant to up-front surgery and intensive timing radiation for malignant glioma. J Clin Oncol 29(27):3611–3619. https://doi.org/10.1200/JCO.2011.35.5222

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Markert JM, Razdan SN, Kuo HC et al (2014) A phase 1 trial of oncolytic HSV-1, g207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses. Mol Ther 22(5):1048–1055. https://doi.org/10.1038/mt.2014.22

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Forsyth P, Roldán G, George D et al (2008) A phase I trial of intratumoral administration of reovirus in patients with histologically confirmed recurrent malignant gliomas. Mol Ther 16(3):627–632. https://doi.org/10.1038/sj.mt.6300403

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Cloughesy TF, Landolfi J, Vogelbaum MA et al (2018) Durable complete responses in some recurrent high-grade glioma patients treated with Toca 511 + Toca FC. Neuro Oncol 20(10):1383–1392. https://doi.org/10.1093/neuonc/noy075

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Geletneky K, Hajda J, Angelova AL et al (2017) Oncolytic H-1 Parvovirus shows safety and signs of immunogenic activity in a first phase I/IIa Glioblastoma Trial. Mol Ther 25(12):2620–2634. https://doi.org/10.1016/j.ymthe.2017.08.016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Lang FF, Conrad C, Gomez-Manzano C et al (2018) Phase I study of DNX-2401 (delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol 36(14):1419–1427. https://doi.org/10.1200/JCO.2017.75.8219

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Perez OD, Logg CR, Hiraoka K et al (2012) Design and selection of toca 511 for clinical use: Modified retroviral replicating vector with improved stability and gene expression. Mol Ther 20(9):1689–1698. https://doi.org/10.1038/mt.2012.83

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Hiraoka K, Inagaki A, Kato Y et al (2017) Retroviral replicating vector-mediated gene therapy achieves long-term control of tumor recurrence and leads to durable anticancer immunity. Neuro Oncol 19(7):918–929. https://doi.org/10.1093/neuonc/nox038

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Mitchell LA, Lopez Espinoza F, Mendoza D et al (2017) Toca 511 gene transfer and treatment with the prodrug, 5-fluorocytosine, promotes durable antitumor immunity in a mouse glioma model. Neuro-Oncology 19(7):930–939. https://doi.org/10.1093/neuonc/nox037

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Okada H, Tsugawa T, Sato H et al (2004) Delivery of interferon-α transfected dendritic cells into central nervous system tumors enhances the antitumor efficacy of peripheral peptide-based vaccines. Cancer Res 64(16):5830–5838. https://doi.org/10.1158/0008-5472.CAN-04-0130

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Okada H, Thorne SH (2017) Is the immune response a friend or foe for viral therapy of glioma? Neuro-Oncology 19(7):882–883. https://doi.org/10.1093/neuonc/nox082

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Cloughesy TF, Landolfi J, Hogan DJ et al (2016) Phase 1 trial of vocimagene amiretrorepvec and 5-fluorocytosine for recurrent high-grade glioma. Sci Transl Med 8(341):341ra75. https://doi.org/10.1126/scitranslmed.aad9784

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Cloughesy TF, Petrecca K, Walbert T et al (2020) Effect of vocimagene amiretrorepvec in combination with flucytosine vs standard of care on survival following tumor resection in patients with recurrent high-grade glioma: a randomized clinical trial. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2020.3161

    Article  PubMed  Google Scholar 

  40. 40.

    Desjardins A, Gromeier M, Herndon JE et al (2018) Recurrent glioblastoma treated with recombinant poliovirus. NeuroOncol Pract 379(2):150–161. https://doi.org/10.1056/NEJMOA1716435

    CAS  Article  Google Scholar 

  41. 41.

    Brown MC, Holl EK, Boczkowski D et al (2017) Cancer immunotherapy with recombinant poliovirus induces IFN-dominant activation of dendritic cells and tumor antigen-specific CTLs. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aan4220

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Jiang H, Clise-Dwyer K, Ruisaard KE et al (2014) Delta-24-RGD oncolytic adenovirus elicits anti-glioma immunity in an immunocompetent mouse model. Castro MG, ed. PLoS ONE 9(5):e97407. https://doi.org/10.1371/journal.pone.0097407

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Kleijn A, Kloezeman J, Treffers-Westerlaken E et al (2014) The in vivo therapeutic efficacy of the oncolytic adenovirus Delta24-RGD is mediated by tumor-specific immunity. Castro MG, ed. PLoS ONE 9(5):e97495. https://doi.org/10.1371/journal.pone.0097495

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Barba D, Hardin J, Sadelain M, Gage FH (1994) Development of anti-tumor immunity following thymidine kinase-mediated killing of experimental brain tumors. Proc Natl Acad Sci USA 91(10):4348–4352. https://doi.org/10.1073/pnas.91.10.4348

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Vile RG, Castleden S, Marshall J, Camplejohn R, Upton C, Chong H (1997) Generation of an anti-tumour immune response in a non-immunogenic tumour: HSVtk killing in vivo stimulates a mononuclear cell infiltrate and a Th1-like profile of intratumoural cytokine expression. Int J Cancer. https://doi.org/10.1002/(SICI)1097-0215(19970410)71:2<267::AID-IJC23>3.0.CO;2-D

  46. 46.

    Gagandeep S, Brew R, Green B et al (1996) Prodrug-activated gene therapy: involvement of an immunological component in the “bystander effect.” Cancer Gene Ther 3(2):83–88

    CAS  PubMed  Google Scholar 

  47. 47.

    Ji N, Weng D, Liu C et al (2016) Adenovirus-mediated delivery of herpes simplex virus thymidine kinase administration improves outcome of recurrent high-grade glioma. Oncotarget 7(4):4369–4378. https://doi.org/10.18632/oncotarget.6737

    Article  PubMed  Google Scholar 

  48. 48.

    Wheeler LA, Manzanera AG, Bell SD et al (2016) Phase II multicenter study of gene-mediated cytotoxic immunotherapy as adjuvant to surgical resection for newly diagnosed malignant glioma. Neuro-Oncology 18(8):1137–1145. https://doi.org/10.1093/neuonc/now002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Zamarin D, Holmgaard RB, Subudhi SK et al (2014) Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med. https://doi.org/10.1126/scitranslmed.3008095

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Woller N, Gürlevik E, Fleischmann-Mundt B et al (2015) Viral infection of tumors overcomes resistance to PD-1-immunotherapy by broadening neoantigenome-directed T-cell responses. Mol Ther 23(10):1630–1640. https://doi.org/10.1038/mt.2015.115

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Hardcastle J, Mills L, Malo CS et al (2017) Immunovirotherapy with measles virus strains in combination with anti-PD-1 antibody blockade enhances antitumor activity in glioblastoma treatment. Neuro-Oncology 19(4):493–502. https://doi.org/10.1093/neuonc/now179

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Cockle JV, Rajani K, Zaidi S et al (2016) Combination viroimmunotherapy with checkpoint inhibition to treat glioma, based on location-specific tumor profiling. Neuro-Oncology 18(4):518–527. https://doi.org/10.1093/neuonc/nov173

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Samson A, Scott KJ, Taggart D et al (2018) Intravenous delivery of oncolytic reovirus to brain tumor patients immunologically primes for subsequent checkpoint blockade. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aam7577

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Genoud V, Marinari E, Nikolaev SI et al (2018) Responsiveness to anti-PD-1 and anti-CTLA-4 immune checkpoint blockade in SB28 and GL261 mouse glioma models. Oncoimmunology 7(12):e1501137. https://doi.org/10.1080/2162402X.2018.1501137

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Smilowitz HM, Weissenberger J, Weis J, Brown JD, O’Neill RJ, Laissue JA (2007) Orthotopic transplantation of v-src-expressing glioma cell lines into immunocompetent mice: establishment of a new transplantable in vivo model for malignant glioma. J Neurosurg 106(4):652–659. https://doi.org/10.3171/jns.2007.106.4.652

    Article  PubMed  Google Scholar 

  56. 56.

    Passaro C, Alayo Q, De Laura I et al (2019) Arming an oncolytic herpes simplex virus type 1 with a single-chain fragment variable antibody against PD-1 for experimental glioblastoma therapy. Clin Cancer Res 25(1):290–299. https://doi.org/10.1158/1078-0432.CCR-18-2311

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Kohlhapp FJ, Kaufman HL (2016) Molecular pathways: Mechanism of action for talimogene laherparepvec, a new oncolytic virus immunotherapy. Clin Cancer Res 22(5):1048–1054. https://doi.org/10.1158/1078-0432.CCR-15-2667

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    King GD, Muhammad AKMG, Curtin JF et al (2008) Flt3L and TK gene therapy eradicate multifocal glioma in a syngeneic glioblastoma model. Neuro Oncol 10(1):19–31. https://doi.org/10.1215/15228517-2007-045

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Barrett JA, Cai H, Miao J et al (2018) Regulated intratumoral expression of IL-12 using a RheoSwitch Therapeutic System® (RTS®) gene switch as gene therapy for the treatment of glioma. Cancer Gene Ther 25(5–6):106–116. https://doi.org/10.1038/s41417-018-0019-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Chiocca EA, Yu JS, Lukas R V, et al. Regulatable Interleukin-12 Gene Therapy in Patients with Recurrent High-Grade Glioma: Results of a Phase 1 Trial. Vol 11.; 2019. http://stm.sciencemag.org/. Accessed June 10, 2020.

  61. 61.

    Hellums EK, Markert JM, Parker JN et al (2005) Increased efficacy of an interleukin-12-secreting herpes simplex virus in a syngeneic intracranial murine glioma model. Neuro Oncol 7(3):213–224. https://doi.org/10.1215/S1152851705000074

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Chiocca EA, Lukas RV, Rao G et al (2019) Evaluation of controlled IL-12 in combination with a PD-1 inhibitor in subjects with recurrent glioblastoma. J Clin Oncol 37(15_Suppl):2020

    Article  Google Scholar 

  63. 63.

    Lowenstein PR, Orringer DA, Sagher O et al (2019) First-in-human phase I trial of the combination of two adenoviral vectors expressing HSV1-TK and FLT3L for the treatment of newly diagnosed resectable malignant glioma: Initial results from the therapeutic reprogramming of the brain immune system. J Clin Oncol 37(15_Suppl):2019

    Article  Google Scholar 

  64. 64.

    Jiang H, Rivera-Molina Y, Gomez-Manzano C et al (2017) Oncolytic adenovirus and tumor-targeting immune modulatory therapy improve autologous cancer vaccination. Cancer Res 77(14):3894–3907. https://doi.org/10.1158/0008-5472.CAN-17-0468

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Rivera-Molina Y, Jiang H, Fueyo J et al (2019) GITRL-armed Delta-24-RGD oncolytic adenovirus prolongs survival and induces anti-glioma immune memory. NeuroOncol Adv 1(1):1–11. https://doi.org/10.1093/noajnl/vdz009

    Article  Google Scholar 

  66. 66.

    Patrizii M, Bartucci M, Pine SR, Sabaawy HE (2018) Utility of glioblastoma patient-derived orthotopic xenografts in drug discovery and personalized therapy. Front Oncol. https://doi.org/10.3389/fonc.2018.00023

    Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Alain T, Lun XQ, Martineau Y et al (2010) Vesicular stomatitis virus oncolysis is potentiated by impairing mTORC1-dependent type I IFN production. Proc Natl Acad Sci USA 107(4):1576–1581. https://doi.org/10.1073/pnas.0912344107

    Article  PubMed  Google Scholar 

  68. 68.

    Critchley-Thorne RJ, Simons DL, Yan N et al (2009) Impaired interferon signaling is a common immune defect in human cancer. Proc Natl Acad Sci USA 106(22):9010–9015. https://doi.org/10.1073/pnas.0901329106

    Article  PubMed  Google Scholar 

  69. 69.

    Lin AH, Burrascano C, Pettersson PL, Ibanez CE, Gruber HE, Jolly DJ (2014) Blockade of Type I Interferon (IFN) production by retroviral replicating vectors and reduced tumor cell responses to IFN likely contribute to tumor selectivity. J Virol 88(17):10066–10077. https://doi.org/10.1128/jvi.02300-13

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manish K. Aghi.

Ethics declarations

Conflict of interest

The authors report no conflict of interest concerning materials or methods used in this study or the findings specified in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haddad, A.F., Young, J.S., Mummaneni, N.V. et al. Immunologic aspects of viral therapy for glioblastoma and implications for interactions with immunotherapies. J Neurooncol 152, 1–13 (2021). https://doi.org/10.1007/s11060-020-03684-5

Download citation

Keywords

  • Oncolytic viruses
  • Glioblastoma
  • Immunotherapy
  • Combination
  • Treatment