Abstract
Introduction
The treatment for glioblastoma (GBM) has remained unchanged for the past decade, with only minimal improvements in patient survival. As a result, novel treatments are needed to combat this devastating disease. Immunotherapies are treatments that stimulate the immune system to attack tumor cells and can be either local or systemically delivered. Viral treatments can lead to direct tumor cell death through their natural lifecycle or through the delivery of a suicide gene, with the potential to generate an anti-tumor immune response, making them interesting candidates for combinatorial treatment with immunotherapy.
Methods
We review the current literature surrounding the interactions between oncolytic viruses and the immune system as well as the use of oncolytic viruses combined with immunotherapies for the treatment of GBM.
Results
Viral therapies have exhibited preclinical efficacy as single-agents and are being investigated in that manner in clinical trials. Oncolytic viruses have significant interactions with the immune system, although this can also vary depending on the strain of virus. Combinatorial treatments using both oncolytic viruses and immunotherapies have demonstrated promising preclinical findings.
Conclusions
Studies combining viral and immunotherapeutic treatment modalities have provided exciting results thus far and hold great promise for patients with GBM. Additional studies assessing the clinical efficacy of these treatments as well as improved preclinical modeling systems, safety mechanisms, and the balance between treatment efficacy and immune-mediated viral clearance should be considered.
This is a preview of subscription content, access via your institution.

References
- 1.
Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N Engl J Med 352(10):987–996. https://doi.org/10.1056/NEJMoa043330
- 2.
Ostrom QT, Cioffi G, Gittleman H et al (2019) CBTRUS Statistical Report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro-Oncology 21(5):v1–v100. https://doi.org/10.1093/neuonc/noz150
- 3.
Jain KK (2018) A critical overview of targeted therapies for glioblastoma. Front Oncol 8:419. https://doi.org/10.3389/fonc.2018.00419
- 4.
Young JS, Dayani F, Morshed RA, Okada H, Aghi MK (2019) Immunotherapy for high-grade gliomas: a clinical update and practical considerations for neurosurgeons. World Neurosurg 124:397–409. https://doi.org/10.1016/j.wneu.2018.12.222
- 5.
Reardon DA, Brandes AA, Omuro A et al (2020) Effect of Nivolumab vs Bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 Phase 3 Randomized Clinical Trial. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2020.1024
- 6.
Montoya ML, Kasahara N, Okada H (2020) Introduction to immunotherapy for brain tumor patients: challenges and future perspectives. Neuro-Oncology Pract. https://doi.org/10.1093/NOP/NPAA007
- 7.
Louveau A, Smirnov I, Keyes TJ et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337–341. https://doi.org/10.1038/nature14432
- 8.
Woroniecka KI, Rhodin KE, Chongsathidkiet P, Keith KA, Fecci PE (2018) T-Cell dysfunction in glioblastoma: applying a new framework. Clin Cancer Res 24(16):3792–3802. https://doi.org/10.1158/1078-0432.CCR-18-0047
- 9.
Aldape K, Zadeh G, Mansouri S, Reifenberger G, von Deimling A (2015) Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129(6):829–848. https://doi.org/10.1007/s00401-015-1432-1
- 10.
D’Alessio A, Proietti G, Sica G, Scicchitano BM (2019) Pathological and molecular features of glioblastoma and its peritumoral tissue. Cancers (Basel). https://doi.org/10.3390/cancers11040469
- 11.
Facoetti A, Nano R, Zelini P et al (2005) Human leukocyte antigen and antigen processing machinery component defects in astrocytic tumors. Clin Cancer Res 11(23):8304–8311. https://doi.org/10.1158/1078-0432.CCR-04-2588
- 12.
Cristescu R, Mogg R, Ayers M et al (2018) Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science (80-). https://doi.org/10.1126/science.aar3593
- 13.
Samstein RM, Lee C-H, Shoushtari AN et al (2019) Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet 51(2):202–206. https://doi.org/10.1038/s41588-018-0312-8
- 14.
Nduom EK, Weller M, Heimberger AB (2015) Immunosuppressive mechanisms in glioblastoma. Neuro-Oncology 17 Suppl 7(Suppl 7):9–14. https://doi.org/10.1093/neuonc/nov151
- 15.
Chongsathidkiet P, Jackson C, Koyama S et al (2018) Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat Med 24(9):1459–1468. https://doi.org/10.1038/s41591-018-0135-2
- 16.
Lim M, Xia Y, Bettegowda C, Weller M (2018) Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol 15(7):422–442. https://doi.org/10.1038/s41571-018-0003-5
- 17.
Woroniecka K, Chongsathidkiet P, Rhodin K et al (2018) T-cell exhaustion signatures vary with tumor type and are severe in glioblastoma. Clin Cancer Res 24(17):4175–4186. https://doi.org/10.1158/1078-0432.CCR-17-1846
- 18.
Alban TJ, Alvarado AG, Sorensen MD et al (2018) Global immune fingerprinting in glioblastoma patient peripheral blood reveals immune-suppression signatures associated with prognosis. JCI insight. https://doi.org/10.1172/jci.insight.122264
- 19.
Ding AS, Routkevitch D, Jackson C, Lim M (2019) Targeting myeloid cells in combination treatments for glioma and other tumors. Front Immunol 10:1715. https://doi.org/10.3389/fimmu.2019.01715
- 20.
Russell SJ, Barber GN (2018) Oncolytic viruses as antigen-agnostic cancer vaccines. Cancer Cell 33(4):599–605. https://doi.org/10.1016/j.ccell.2018.03.011
- 21.
Lichty BD, Breitbach CJ, Stojdl DF, Bell JC (2014) Going viral with cancer immunotherapy. Nat Rev Cancer 14(8):559–567. https://doi.org/10.1038/nrc3770
- 22.
Ribas A, Dummer R, Puzanov I et al (2017) Oncolytic virotherapy promotes intratumoral T cell infiltration and improves Anti-PD-1 immunotherapy. Cell 170(6):1109-1119.e10. https://doi.org/10.1016/j.cell.2017.08.027
- 23.
Diaz RM, Galivo F, Kottke T et al (2007) Oncolytic immunovirotherapy for melanoma using vesicular stomatitis virus. Cancer Res 67(6):2840–2848. https://doi.org/10.1158/0008-5472.CAN-06-3974
- 24.
Kim JW, Miska J, Young JS et al (2017) A comparative study of replication-incompetent and -competent adenoviral therapy-mediated immune response in a Murine Glioma Model. Mol Ther - Oncolytics 5:97–104. https://doi.org/10.1016/j.omto.2017.05.001
- 25.
Kaufman HL, Bines SD (2010) OPTIM trial: a Phase III trial of an oncolytic herpes virus encoding GM-CSF for unresectable stage III or IV melanoma. Future Oncol 6(6):941–949. https://doi.org/10.2217/fon.10.66
- 26.
Lawler SE, Speranza MC, Cho CF, Chiocca EA (2017) Oncolytic viruses in cancer treatment a review. JAMA Oncol 3(6):841–849. https://doi.org/10.1001/jamaoncol.2016.2064
- 27.
Chiocca EA, Aguilar LK, Bell SD et al (2011) Phase IB study of gene-mediated cytotoxic immunotherapy adjuvant to up-front surgery and intensive timing radiation for malignant glioma. J Clin Oncol 29(27):3611–3619. https://doi.org/10.1200/JCO.2011.35.5222
- 28.
Markert JM, Razdan SN, Kuo HC et al (2014) A phase 1 trial of oncolytic HSV-1, g207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses. Mol Ther 22(5):1048–1055. https://doi.org/10.1038/mt.2014.22
- 29.
Forsyth P, Roldán G, George D et al (2008) A phase I trial of intratumoral administration of reovirus in patients with histologically confirmed recurrent malignant gliomas. Mol Ther 16(3):627–632. https://doi.org/10.1038/sj.mt.6300403
- 30.
Cloughesy TF, Landolfi J, Vogelbaum MA et al (2018) Durable complete responses in some recurrent high-grade glioma patients treated with Toca 511 + Toca FC. Neuro Oncol 20(10):1383–1392. https://doi.org/10.1093/neuonc/noy075
- 31.
Geletneky K, Hajda J, Angelova AL et al (2017) Oncolytic H-1 Parvovirus shows safety and signs of immunogenic activity in a first phase I/IIa Glioblastoma Trial. Mol Ther 25(12):2620–2634. https://doi.org/10.1016/j.ymthe.2017.08.016
- 32.
Lang FF, Conrad C, Gomez-Manzano C et al (2018) Phase I study of DNX-2401 (delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol 36(14):1419–1427. https://doi.org/10.1200/JCO.2017.75.8219
- 33.
Perez OD, Logg CR, Hiraoka K et al (2012) Design and selection of toca 511 for clinical use: Modified retroviral replicating vector with improved stability and gene expression. Mol Ther 20(9):1689–1698. https://doi.org/10.1038/mt.2012.83
- 34.
Hiraoka K, Inagaki A, Kato Y et al (2017) Retroviral replicating vector-mediated gene therapy achieves long-term control of tumor recurrence and leads to durable anticancer immunity. Neuro Oncol 19(7):918–929. https://doi.org/10.1093/neuonc/nox038
- 35.
Mitchell LA, Lopez Espinoza F, Mendoza D et al (2017) Toca 511 gene transfer and treatment with the prodrug, 5-fluorocytosine, promotes durable antitumor immunity in a mouse glioma model. Neuro-Oncology 19(7):930–939. https://doi.org/10.1093/neuonc/nox037
- 36.
Okada H, Tsugawa T, Sato H et al (2004) Delivery of interferon-α transfected dendritic cells into central nervous system tumors enhances the antitumor efficacy of peripheral peptide-based vaccines. Cancer Res 64(16):5830–5838. https://doi.org/10.1158/0008-5472.CAN-04-0130
- 37.
Okada H, Thorne SH (2017) Is the immune response a friend or foe for viral therapy of glioma? Neuro-Oncology 19(7):882–883. https://doi.org/10.1093/neuonc/nox082
- 38.
Cloughesy TF, Landolfi J, Hogan DJ et al (2016) Phase 1 trial of vocimagene amiretrorepvec and 5-fluorocytosine for recurrent high-grade glioma. Sci Transl Med 8(341):341ra75. https://doi.org/10.1126/scitranslmed.aad9784
- 39.
Cloughesy TF, Petrecca K, Walbert T et al (2020) Effect of vocimagene amiretrorepvec in combination with flucytosine vs standard of care on survival following tumor resection in patients with recurrent high-grade glioma: a randomized clinical trial. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2020.3161
- 40.
Desjardins A, Gromeier M, Herndon JE et al (2018) Recurrent glioblastoma treated with recombinant poliovirus. NeuroOncol Pract 379(2):150–161. https://doi.org/10.1056/NEJMOA1716435
- 41.
Brown MC, Holl EK, Boczkowski D et al (2017) Cancer immunotherapy with recombinant poliovirus induces IFN-dominant activation of dendritic cells and tumor antigen-specific CTLs. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aan4220
- 42.
Jiang H, Clise-Dwyer K, Ruisaard KE et al (2014) Delta-24-RGD oncolytic adenovirus elicits anti-glioma immunity in an immunocompetent mouse model. Castro MG, ed. PLoS ONE 9(5):e97407. https://doi.org/10.1371/journal.pone.0097407
- 43.
Kleijn A, Kloezeman J, Treffers-Westerlaken E et al (2014) The in vivo therapeutic efficacy of the oncolytic adenovirus Delta24-RGD is mediated by tumor-specific immunity. Castro MG, ed. PLoS ONE 9(5):e97495. https://doi.org/10.1371/journal.pone.0097495
- 44.
Barba D, Hardin J, Sadelain M, Gage FH (1994) Development of anti-tumor immunity following thymidine kinase-mediated killing of experimental brain tumors. Proc Natl Acad Sci USA 91(10):4348–4352. https://doi.org/10.1073/pnas.91.10.4348
- 45.
Vile RG, Castleden S, Marshall J, Camplejohn R, Upton C, Chong H (1997) Generation of an anti-tumour immune response in a non-immunogenic tumour: HSVtk killing in vivo stimulates a mononuclear cell infiltrate and a Th1-like profile of intratumoural cytokine expression. Int J Cancer. https://doi.org/10.1002/(SICI)1097-0215(19970410)71:2<267::AID-IJC23>3.0.CO;2-D
- 46.
Gagandeep S, Brew R, Green B et al (1996) Prodrug-activated gene therapy: involvement of an immunological component in the “bystander effect.” Cancer Gene Ther 3(2):83–88
- 47.
Ji N, Weng D, Liu C et al (2016) Adenovirus-mediated delivery of herpes simplex virus thymidine kinase administration improves outcome of recurrent high-grade glioma. Oncotarget 7(4):4369–4378. https://doi.org/10.18632/oncotarget.6737
- 48.
Wheeler LA, Manzanera AG, Bell SD et al (2016) Phase II multicenter study of gene-mediated cytotoxic immunotherapy as adjuvant to surgical resection for newly diagnosed malignant glioma. Neuro-Oncology 18(8):1137–1145. https://doi.org/10.1093/neuonc/now002
- 49.
Zamarin D, Holmgaard RB, Subudhi SK et al (2014) Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med. https://doi.org/10.1126/scitranslmed.3008095
- 50.
Woller N, Gürlevik E, Fleischmann-Mundt B et al (2015) Viral infection of tumors overcomes resistance to PD-1-immunotherapy by broadening neoantigenome-directed T-cell responses. Mol Ther 23(10):1630–1640. https://doi.org/10.1038/mt.2015.115
- 51.
Hardcastle J, Mills L, Malo CS et al (2017) Immunovirotherapy with measles virus strains in combination with anti-PD-1 antibody blockade enhances antitumor activity in glioblastoma treatment. Neuro-Oncology 19(4):493–502. https://doi.org/10.1093/neuonc/now179
- 52.
Cockle JV, Rajani K, Zaidi S et al (2016) Combination viroimmunotherapy with checkpoint inhibition to treat glioma, based on location-specific tumor profiling. Neuro-Oncology 18(4):518–527. https://doi.org/10.1093/neuonc/nov173
- 53.
Samson A, Scott KJ, Taggart D et al (2018) Intravenous delivery of oncolytic reovirus to brain tumor patients immunologically primes for subsequent checkpoint blockade. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aam7577
- 54.
Genoud V, Marinari E, Nikolaev SI et al (2018) Responsiveness to anti-PD-1 and anti-CTLA-4 immune checkpoint blockade in SB28 and GL261 mouse glioma models. Oncoimmunology 7(12):e1501137. https://doi.org/10.1080/2162402X.2018.1501137
- 55.
Smilowitz HM, Weissenberger J, Weis J, Brown JD, O’Neill RJ, Laissue JA (2007) Orthotopic transplantation of v-src-expressing glioma cell lines into immunocompetent mice: establishment of a new transplantable in vivo model for malignant glioma. J Neurosurg 106(4):652–659. https://doi.org/10.3171/jns.2007.106.4.652
- 56.
Passaro C, Alayo Q, De Laura I et al (2019) Arming an oncolytic herpes simplex virus type 1 with a single-chain fragment variable antibody against PD-1 for experimental glioblastoma therapy. Clin Cancer Res 25(1):290–299. https://doi.org/10.1158/1078-0432.CCR-18-2311
- 57.
Kohlhapp FJ, Kaufman HL (2016) Molecular pathways: Mechanism of action for talimogene laherparepvec, a new oncolytic virus immunotherapy. Clin Cancer Res 22(5):1048–1054. https://doi.org/10.1158/1078-0432.CCR-15-2667
- 58.
King GD, Muhammad AKMG, Curtin JF et al (2008) Flt3L and TK gene therapy eradicate multifocal glioma in a syngeneic glioblastoma model. Neuro Oncol 10(1):19–31. https://doi.org/10.1215/15228517-2007-045
- 59.
Barrett JA, Cai H, Miao J et al (2018) Regulated intratumoral expression of IL-12 using a RheoSwitch Therapeutic System® (RTS®) gene switch as gene therapy for the treatment of glioma. Cancer Gene Ther 25(5–6):106–116. https://doi.org/10.1038/s41417-018-0019-0
- 60.
Chiocca EA, Yu JS, Lukas R V, et al. Regulatable Interleukin-12 Gene Therapy in Patients with Recurrent High-Grade Glioma: Results of a Phase 1 Trial. Vol 11.; 2019. http://stm.sciencemag.org/. Accessed June 10, 2020.
- 61.
Hellums EK, Markert JM, Parker JN et al (2005) Increased efficacy of an interleukin-12-secreting herpes simplex virus in a syngeneic intracranial murine glioma model. Neuro Oncol 7(3):213–224. https://doi.org/10.1215/S1152851705000074
- 62.
Chiocca EA, Lukas RV, Rao G et al (2019) Evaluation of controlled IL-12 in combination with a PD-1 inhibitor in subjects with recurrent glioblastoma. J Clin Oncol 37(15_Suppl):2020
- 63.
Lowenstein PR, Orringer DA, Sagher O et al (2019) First-in-human phase I trial of the combination of two adenoviral vectors expressing HSV1-TK and FLT3L for the treatment of newly diagnosed resectable malignant glioma: Initial results from the therapeutic reprogramming of the brain immune system. J Clin Oncol 37(15_Suppl):2019
- 64.
Jiang H, Rivera-Molina Y, Gomez-Manzano C et al (2017) Oncolytic adenovirus and tumor-targeting immune modulatory therapy improve autologous cancer vaccination. Cancer Res 77(14):3894–3907. https://doi.org/10.1158/0008-5472.CAN-17-0468
- 65.
Rivera-Molina Y, Jiang H, Fueyo J et al (2019) GITRL-armed Delta-24-RGD oncolytic adenovirus prolongs survival and induces anti-glioma immune memory. NeuroOncol Adv 1(1):1–11. https://doi.org/10.1093/noajnl/vdz009
- 66.
Patrizii M, Bartucci M, Pine SR, Sabaawy HE (2018) Utility of glioblastoma patient-derived orthotopic xenografts in drug discovery and personalized therapy. Front Oncol. https://doi.org/10.3389/fonc.2018.00023
- 67.
Alain T, Lun XQ, Martineau Y et al (2010) Vesicular stomatitis virus oncolysis is potentiated by impairing mTORC1-dependent type I IFN production. Proc Natl Acad Sci USA 107(4):1576–1581. https://doi.org/10.1073/pnas.0912344107
- 68.
Critchley-Thorne RJ, Simons DL, Yan N et al (2009) Impaired interferon signaling is a common immune defect in human cancer. Proc Natl Acad Sci USA 106(22):9010–9015. https://doi.org/10.1073/pnas.0901329106
- 69.
Lin AH, Burrascano C, Pettersson PL, Ibanez CE, Gruber HE, Jolly DJ (2014) Blockade of Type I Interferon (IFN) production by retroviral replicating vectors and reduced tumor cell responses to IFN likely contribute to tumor selectivity. J Virol 88(17):10066–10077. https://doi.org/10.1128/jvi.02300-13
Funding
None.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors report no conflict of interest concerning materials or methods used in this study or the findings specified in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Haddad, A.F., Young, J.S., Mummaneni, N.V. et al. Immunologic aspects of viral therapy for glioblastoma and implications for interactions with immunotherapies. J Neurooncol 152, 1–13 (2021). https://doi.org/10.1007/s11060-020-03684-5
Received:
Accepted:
Published:
Issue Date:
Keywords
- Oncolytic viruses
- Glioblastoma
- Immunotherapy
- Combination
- Treatment