Skip to main content

Advertisement

Log in

Comprehensive analysis of the immunological landscape of pituitary adenomas: implications of immunotherapy for pituitary adenomas

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purposes

Immunotherapies for solid tumor are gaining traction in the clinic, however, the immunological landscape of pituitary adenomas (PAs) is not well defined. In the present study, we used the RNA-seq data of PAs to investigate the impact of immunological landscape on clinical features of pituitary adenomas and aim to evaluate the potential immunotherapy for PAs.

Methods

We analyzed tumor-infiltrating immune cells in 115 PA samples using RNA-seq. Main immune cell types (B cells, CD8+ T cells, CD4+ T cells, macrophages and NK cells) were detected from the expression of genes. The association between immune cells abundance and immune checkpoint, as well as inflammatory factors were analyzed. 10 additional patients were enrolled for validation.

Results

In RNA sequencing data, landscape of PAs were identified. Our computationally inferred immune infiltrates significantly associate with patient clinical features. Growth hormone-secreting adenomas (GHomas) were found with higher B cells and CD8+ T cells infiltration. Moreover, GHomas showed relative different genetic background, significant invasive behavior and independently correlated with reduced progress-free time. Tumor progression was related to increased expression of PD-1/PD-L1 and was associated with higher immune infiltration. Analysis of cancer-testis antigen expression and CD8+ T-cell abundance suggested CTAG2 and TSPYL6 were potential immunotherapeutic targets in GHomas and non-functioning adenomas, respectively.

Conclusions

Tumor-infiltrating immune cells confer important clinical and biological implications. Our results of immune-infiltrate levels in PAs may inform effective cancer vaccine and checkpoint blockade therapies and make it possible to take immunotherapy into invasive PAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data available on request from the authors.

Code availability

Not applicable.

References

  1. Fernandez A, Karavitaki N, Wass JA (2010) Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin Endocrinol (Oxf) 72(3):377–382. https://doi.org/10.1111/j.1365-2265.2009.03667.x

    Article  Google Scholar 

  2. Hansen TM, Batra S, Lim M, Gallia GL, Burger PC, Salvatori R, Wand G, Quinones-Hinojosa A, Kleinberg L, Redmond KJ (2014) Invasive adenoma and pituitary carcinoma: a SEER database analysis. Neurosurg Rev 37(2):279–285. https://doi.org/10.1007/s10143-014-0525-y

    Article  Google Scholar 

  3. Selman WR, Laws ER Jr, Scheithauer BW, Carpenter SM (1986) The occurrence of dural invasion in pituitary adenomas. J Neurosurg 64(3):402–407. https://doi.org/10.3171/jns.1986.64.3.0402

    Article  CAS  Google Scholar 

  4. Kaltsas GA, Nomikos P, Kontogeorgos G, Buchfelder M, Grossman AB (2005) Clinical review: diagnosis and management of pituitary carcinomas. J Clin Endocrinol Metab 90(5):3089–3099. https://doi.org/10.1210/jc.2004-2231

    Article  CAS  Google Scholar 

  5. Heaney AP (2011) Clinical review: pituitary carcinoma: difficult diagnosis and treatment. J Clin Endocrinol Metab 96(12):3649–3660. https://doi.org/10.1210/jc.2011-2031

    Article  CAS  Google Scholar 

  6. Scheithauer BW, Gaffey TA, Lloyd RV, Sebo TJ, Kovacs KT, Horvath E, Yapicier O, Young WF Jr, Meyer FB, Kuroki T, Riehle DL, Laws ER Jr (2006) Pathobiology of pituitary adenomas and carcinomas. Neurosurgery 59(2):341–353. https://doi.org/10.1227/01.NEU.0000223437.51435.6E

    Article  Google Scholar 

  7. McCutcheon IE (2013) Pituitary adenomas: surgery and radiotherapy in the age of molecular diagnostics and pathology. Curr Probl Cancer 37(1):6–37. https://doi.org/10.1016/j.currproblcancer.2012.10.001

    Article  Google Scholar 

  8. Sav A, Rotondo F, Syro LV, Di Ieva A, Cusimano MD, Kovacs K (2015) Invasive, atypical and aggressive pituitary adenomas and carcinomas. Endocrinol Metab Clin North Am 44(1):99–104. https://doi.org/10.1016/j.ecl.2014.10.008

    Article  Google Scholar 

  9. Li B, Severson E, Pignon JC, Zhao H, Li T, Novak J, Jiang P, Shen H, Aster JC, Rodig S, Signoretti S, Liu JS, Liu XS (2016) Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol 17(1):174. https://doi.org/10.1186/s13059-016-1028-7

    Article  CAS  Google Scholar 

  10. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N (2015) Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160(1–2):48–61. https://doi.org/10.1016/j.cell.2014.12.033

    Article  CAS  Google Scholar 

  11. Wang PF, Wang TJ, Yang YK, Yao K, Li Z, Li YM, Yan CX (2018) The expression profile of PD-L1 and CD8(+) lymphocyte in pituitary adenomas indicating for immunotherapy. J Neurooncol 139(1):89–95. https://doi.org/10.1007/s11060-018-2844-2

    Article  CAS  Google Scholar 

  12. Kemeny HR, Elsamadicy AA, Farber SH, Champion CD, Lorrey SJ, Chongsathidkiet P, Woroniecka KI, Cui X, Shen SH, Rhodin KE, Tsvankin V, Everitt J, Sanchez-Perez L, Healy P, McLendon RE, Codd PJ, Dunn IF, Fecci PE (2020) Targeting PD-L1 initiates effective antitumor immunity in a murine model of cushing disease. Clin Cancer Res 26(5):1141–1151. https://doi.org/10.1158/1078-0432.CCR-18-3486

    Article  CAS  Google Scholar 

  13. Lin AL, Jonsson P, Tabar V, Yang TJ, Cuaron J, Beal K, Cohen M, Postow M, Rosenblum M, Shia J, DeAngelis LM, Taylor BS, Young RJ, Geer EB (2018) Marked response of a hypermutated ACTH-secreting pituitary carcinoma to ipilimumab and nivolumab. J Clin Endocrinol Metab 103(10):3925–3930. https://doi.org/10.1210/jc.2018-01347

    Article  Google Scholar 

  14. Prieto PA, Yang JC, Sherry RM, Hughes MS, Kammula US, White DE, Levy CL, Rosenberg SA, Phan GQ (2012) CTLA-4 blockade with ipilimumab: long-term follow-up of 177 patients with metastatic melanoma. Clin Cancer Res 18(7):2039–2047. https://doi.org/10.1158/1078-0432.CCR-11-1823

    Article  CAS  Google Scholar 

  15. Farhood B, Najafi M, Mortezaee K (2019) CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: a review. J Cell Physiol 234(6):8509–8521. https://doi.org/10.1002/jcp.27782

    Article  CAS  Google Scholar 

  16. Yeung JT, Vesely MD, Miyagishima DF (2020) In silico analysis of the immunological landscape of pituitary adenomas. J Neurooncol 147(3):595–598. https://doi.org/10.1007/s11060-020-03476-x

    Article  Google Scholar 

  17. Mete O, Lopes MB (2017) Overview of the 2017 WHO classification of pituitary tumors. Endocr Pathol 28(3):228–243. https://doi.org/10.1007/s12022-017-9498-z

    Article  CAS  Google Scholar 

  18. Donoho DA, Bose N, Zada G, Carmichael JD (2017) Management of aggressive growth hormone secreting pituitary adenomas. Pituitary 20(1):169–178. https://doi.org/10.1007/s11102-016-0781-7

    Article  CAS  Google Scholar 

  19. Trouillas J, Roy P, Sturm N, Dantony E, Cortet-Rudelli C, Viennet G, Bonneville JF, Assaker R, Auger C, Brue T, Cornelius A, Dufour H, Jouanneau E, Francois P, Galland F, Mougel F, Chapuis F, Villeneuve L, Maurage CA, Figarella-Branger D, Raverot G, members of, H., Barlier, A., Bernier, M., Bonnet, F., Borson-Chazot, F., Brassier, G., Caulet-Maugendre, S., Chabre, O., Chanson, P., Cottier, J.F., Delemer, B., Delgrange, E., Di Tommaso, L., Eimer, S., Gaillard, S., Jan, M., Girard, J.J., Lapras, V., Loiseau, H., Passagia, J.G., Patey, M., Penfornis, A., Poirier, J.Y., Perrin, G., Tabarin, A, (2013) A new prognostic clinicopathological classification of pituitary adenomas: a multicentric case-control study of 410 patients with 8 years post-operative follow-up. Acta Neuropathol 126(1):123–135. https://doi.org/10.1007/s00401-013-1084-y

    Article  Google Scholar 

  20. Park SH, Jang JH, Lee YM, Kim JS, Kim KH, Kim YZ (2017) Function of cell-cycle regulators in predicting silent pituitary adenoma progression following surgical resection. Oncol Lett 14(6):7121–7130. https://doi.org/10.3892/ol.2017.7117

    Article  CAS  Google Scholar 

  21. Nicholas SE, Salvatori R, Quinones-Hinojosa A, Redmond K, Gallia G, Lim M, Rigamonti D, Brem H, Kleinberg L (2018) Deferred radiotherapy after debulking of non-functioning pituitary macroadenomas: clinical outcomes. Front Oncol 8:660. https://doi.org/10.3389/fonc.2018.00660

    Article  Google Scholar 

  22. Wang X, Zhang D, Ma S, Li P, Zhou W, Zhang C, Jia W (2019) Predicting the likelihood of early recurrence based on mRNA sequencing of pituitary adenomas. Gland Surg 8(6):648–656. https://doi.org/10.21037/gs.2019.11.02

    Article  Google Scholar 

  23. Zhang C, Cheng W, Ren X, Wang Z, Liu X, Li G, Han S, Jiang T, Wu A (2017) Tumor purity as an underlying key factor in glioma. Clin Cancer Res 23(20):6279–6291. https://doi.org/10.1158/1078-0432.CCR-16-2598

    Article  CAS  Google Scholar 

  24. Racle J, de Jonge K, Baumgaertner P, Speiser DE, Gfeller D (2017) Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. Elife. https://doi.org/10.7554/eLife.26476

    Article  Google Scholar 

  25. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. https://doi.org/10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  26. Li G, Wang Z, Zhang C, Liu X, Cai J, Wang Z, Hu H, Wu F, Bao Z, Liu Y, Zhao L, Liang T, Yang F, Huang R, Zhang W, Jiang T (2017) Molecular and clinical characterization of TIM-3 in glioma through 1024 samples. Oncoimmunology 6(8):e1328339. https://doi.org/10.1080/2162402X.2017.1328339

    Article  Google Scholar 

  27. Leelatian N, Doxie DB, Greenplate AR, Sinnaeve J, Ihrie RA, Irish JM (2017) Preparing viable single cells from human tissue and tumors for cytomic analysis. Curr Protoc Mol Biol. https://doi.org/10.1002/cpmb.37

    Article  Google Scholar 

  28. Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC, Angell H, Fredriksen T, Lafontaine L, Berger A, Bruneval P, Fridman WH, Becker C, Pages F, Speicher MR, Trajanoski Z, Galon J (2013) Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39(4):782–795. https://doi.org/10.1016/j.immuni.2013.10.003

    Article  CAS  Google Scholar 

  29. Monti M, Mancini LL, Ferrari B, Rahal D, Santoro A (2003) Complications of therapy and a diagnostic dilemma case. Case 2. Cutaneous toxicity induced by cetuximab. J Clin Oncol 21(24):4651–4653. https://doi.org/10.1200/JCO.2003.04.169

    Article  Google Scholar 

  30. Tu Z, Xiao R, Xiong J, Tembo KM, Deng X, Xiong M, Liu P, Wang M, Zhang Q (2016) CCR9 in cancer: oncogenic role and therapeutic targeting. J Hematol Oncol 9:10. https://doi.org/10.1186/s13045-016-0236-7

    Article  CAS  Google Scholar 

  31. Qin S, Liu D, Kohli M, Wang L, Vedell PT, Hillman DW, Niu N, Yu J, Weinshilboum RM, Wang L (2017) TSPYL family regulates CYP17A1 and CYP3A4 expression: potential mechanism contributing to abiraterone response in metastatic castration-resistant prostate cancer. Clin Pharmacol Ther. https://doi.org/10.1002/cpt.907

    Article  Google Scholar 

  32. Marques P, Barry S, Carlsen E, Collier D, Ronaldson A, Awad S, Dorward N, Grieve J, Mendoza N, Muquit S, Grossman AB, Balkwill F, Korbonits M (2019) Chemokines modulate the tumour microenvironment in pituitary neuroendocrine tumours. Acta Neuropathol Commun 7(1):172. https://doi.org/10.1186/s40478-019-0830-3

    Article  CAS  Google Scholar 

  33. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  Google Scholar 

  34. Corsello SM, Barnabei A, Marchetti P, De Vecchis L, Salvatori R, Torino F (2013) Endocrine side effects induced by immune checkpoint inhibitors. J Clin Endocrinol Metab 98(4):1361–1375. https://doi.org/10.1210/jc.2012-4075

    Article  CAS  Google Scholar 

  35. Salomon MP, Wang X, Marzese DM, Hsu SC, Nelson N, Zhang X, Matsuba C, Takasumi Y, Ballesteros-Merino C, Fox BA, Barkhoudarian G, Kelly DF, Hoon DSB (2018) The epigenomic landscape of pituitary adenomas reveals specific alterations and differentiates among acromegaly, cushing's disease and endocrine-inactive subtypes. Clin Cancer Res 24(17):4126–4136. https://doi.org/10.1158/1078-0432.CCR-17-2206

    Article  CAS  Google Scholar 

  36. Waldmann TA, Chen J (2017) Disorders of the JAK/STAT pathway in T cell lymphoma pathogenesis: implications for immunotherapy. Annu Rev Immunol 35:533–550. https://doi.org/10.1146/annurev-immunol-110416-120628

    Article  CAS  Google Scholar 

  37. Drake CG, Lipson EJ, Brahmer JR (2014) Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer. Nat Rev Clin Oncol 11(1):24–37. https://doi.org/10.1038/nrclinonc.2013.208

    Article  CAS  Google Scholar 

  38. Almeida LG, Sakabe NJ, deOliveira AR, Silva MC, Mundstein AS, Cohen T, Chen YT, Chua R, Gurung S, Gnjatic S, Jungbluth AA, Caballero OL, Bairoch A, Kiesler E, White SL, Simpson AJ, Old LJ, Camargo AA, Vasconcelos AT (2009) CTdatabase: a knowledge-base of high-throughput and curated data on cancer-testis antigens. Nucleic Acids Res. https://doi.org/10.1093/nar/gkn673

    Article  Google Scholar 

  39. Lu JQ, Adam B, Jack AS, Lam A, Broad RW, Chik CL (2015) Immune cell infiltrates in pituitary adenomas: more macrophages in larger adenomas and more T cells in growth hormone adenomas. Endocr Pathol 26(3):263–272. https://doi.org/10.1007/s12022-015-9383-6

    Article  CAS  Google Scholar 

  40. Iacovazzo D, Chiloiro S, Carlsen E, Bianchi A, Giampietro A, Tartaglione T, Bima C, Bracaccia ME, Lugli F, Lauretti L, Anile C, Gessi M, Colosimo C, Rindi G, Pontecorvi A, Korbonits M, De Marinis L (2020) Tumour-infiltrating cytotoxic T lymphocytes in somatotroph pituitary neuroendocrine tumours. Endocrine 67(3):651–658. https://doi.org/10.1007/s12020-019-02145-y

    Article  CAS  Google Scholar 

  41. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998. https://doi.org/10.1038/ni1102-991

    Article  CAS  Google Scholar 

  42. Ribatti D (2017) The concept of immune surveillance against tumors. First Theories Oncotarget 8(4):7175–7180. https://doi.org/10.18632/oncotarget.12739

    Article  Google Scholar 

  43. Mei Y, Bi WL, Greenwald NF, Du Z, Agar NY, Kaiser UB, Woodmansee WW, Reardon DA, Freeman GJ, Fecci PE, Laws ER Jr, Santagata S, Dunn GP, Dunn IF (2016) Increased expression of programmed death ligand 1 (PD-L1) in human pituitary tumors. Oncotarget 7(47):76565–76576. https://doi.org/10.18632/oncotarget.12088

    Article  Google Scholar 

  44. Juneja VR, McGuire KA, Manguso RT, LaFleur MW, Collins N, Haining WN, Freeman GJ, Sharpe AH (2017) PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J Exp Med. https://doi.org/10.1084/jem.20160801

    Article  Google Scholar 

  45. Swamydas M, Ricci K, Rego SL, Dreau D (2013) Mesenchymal stem cell-derived CCL-9 and CCL-5 promote mammary tumor cell invasion and the activation of matrix metalloproteinases. Cell Adh Migr 7(3):315–324. https://doi.org/10.4161/cam.25138

    Article  Google Scholar 

  46. Barry S, Carlsen E, Marques P, Stiles CE, Gadaleta E, Berney DM, Roncaroli F, Chelala C, Solomou A, Herincs M, Caimari F, Grossman AB, Crnogorac-Jurcevic T, Haworth O, Gaston-Massuet C, Korbonits M (2019) Tumor microenvironment defines the invasive phenotype of AIP-mutation-positive pituitary tumors. Oncogene 38(27):5381–5395. https://doi.org/10.1038/s41388-019-0779-5

    Article  CAS  Google Scholar 

  47. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444. https://doi.org/10.1038/nature07205

    Article  CAS  Google Scholar 

  48. Mocellin S, Marincola FM, Young HA (2005) Interleukin-10 and the immune response against cancer: a counterpoint. J Leukoc Biol 78(5):1043–1051. https://doi.org/10.1189/jlb.0705358

    Article  CAS  Google Scholar 

  49. Ogden CA, Pound JD, Batth BK, Owens S, Johannessen I, Wood K, Gregory CD (2005) Enhanced apoptotic cell clearance capacity and B cell survival factor production by IL-10-activated macrophages: implications for Burkitt's lymphoma. J Immunol 174(5):3015–3023. https://doi.org/10.4049/jimmunol.174.5.3015

    Article  CAS  Google Scholar 

  50. He Y, van Bommel PE, Samplonius DF, Bremer E, Helfrich W (2017) A versatile pretargeting approach for tumour-selective delivery and activation of TNF superfamily members. Sci Rep 7(1):13301. https://doi.org/10.1038/s41598-017-13530-w

    Article  CAS  Google Scholar 

  51. Candido J, Hagemann T (2013) Cancer-related inflammation. J Clin Immunol 33(Suppl 1):S79–S84. https://doi.org/10.1007/s10875-012-9847-0

    Article  CAS  Google Scholar 

  52. Slebioda TJ, Rowley TF, Ferdinand JR, Willoughby JE, Buchan SL, Taraban VY, Al-Shamkhani A (2011) Triggering of TNFRSF25 promotes CD8(+) T-cell responses and anti-tumor immunity. Eur J Immunol 41(9):2606–2611. https://doi.org/10.1002/eji.201141477

    Article  CAS  Google Scholar 

  53. Maine EA, Westcott JM, Prechtl AM, Dang TT, Whitehurst AW, Pearson GW (2016) The cancer-testis antigens SPANX-A/C/D and CTAG2 promote breast cancer invasion. Oncotarget 7(12):14708–14726. https://doi.org/10.18632/oncotarget.7408

    Article  Google Scholar 

  54. Liu M, Li B, Guo W, Zhang X, Chen Z, Li J, Yan M, Chen C, Jin T (2016) Association between single nucleotide polymorphisms in the TSPYL6 gene and breast cancer susceptibility in the Han Chinese population. Oncotarget 7(34):54771–54781. https://doi.org/10.18632/oncotarget.10754

    Article  Google Scholar 

  55. Ben-Shlomo A, Cooper O (2018) Silent corticotroph adenomas. Pituitary 21(2):183–193. https://doi.org/10.1007/s11102-018-0864-8

    Article  CAS  Google Scholar 

  56. Langlois F, Woltjer R, Cetas JS, Fleseriu M (2018) Silent somatotroph pituitary adenomas: an update. Pituitary 21(2):194–202. https://doi.org/10.1007/s11102-017-0858-y

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Beijing Municipal Health Commission of China (Grant No. PXM2019_026280_000002, Recipient: Wang Jia).

Author information

Authors and Affiliations

Authors

Contributions

WZ—Conception and design, Acquisition of data, Development of methodology, Analysis and interpretation of data, Writing, review and/or revision of the manuscript, Administrative, technical, or material support. CZ—Conception and design, Acquisition of data, Development of methodology, Analysis and interpretation of data, Writing, review and/or revision of the manuscript, Administrative, technical, or material support. WJ—Conception and design, Writing, review and/or revision of the manuscript, Administrative, technical, or material support, Study supervision. ZD—Development of methodology. JP—Development of methodology. SM—Acquisition of data. XW—Acquisition of data. XG—Acquisition of data. JD—Analysis and interpretation of data. JN—Analysis and interpretation of data. GJ—Writing, review and/or revision of the manuscript, Administrative, technical, or material support. DL—Administrative, technical, or material support. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wang Jia.

Ethics declarations

Conflict of interest/Competing interests

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Zhang, C., Zhang, D. et al. Comprehensive analysis of the immunological landscape of pituitary adenomas: implications of immunotherapy for pituitary adenomas. J Neurooncol 149, 473–487 (2020). https://doi.org/10.1007/s11060-020-03636-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03636-z

Keywords

Navigation