Skip to main content

Advertisement

Log in

AKT/GSK-3β/β-catenin signaling pathway participates in erythropoietin-promoted glioma proliferation

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Although erythropoietin (EPO) has been proven to significantly promote the proliferation of cancer cells, the mechanism for promoting glioma proliferation is poorly understood. Here, we examined the functional role of the AKT/GSK-3β/β-catenin signaling pathway in the EPO-mediated proliferation of glioma.

Methods

The distribution of EPO and Ki-67 among clinical samples with different WHO grades was plotted by Immunological Histological Chemistry analysis. U87 and U251 glioma cell lines were treated with short hairpin RNA targeting (shEPO), recombinant human erythropoietin (rhEPO) and/or AKT-specific inhibitor (MK-2206). The changes in phosphorylated AKT, nuclear β-catenin, cyclin D1 and p27kip1 expression were detected. Cell cycle distributions and glioma proliferation in vitro and in vivo were analyzed.

Results

The expression level of EPO was significantly elevated with the increase of WHO grade and Ki67 in clinical glioma specimens. In vitro, knockdown of endogenous EPO in U87 and U251 cells effectively block the phosphorylation of AKT and GSK-3β and the expression of nuclear β-catenin. shEPO treatment also significantly decreased the expression of cyclin D1 and increased the expression of p27kip1. The cell cycle transition then slowed down and the proliferation of glioma cells or mouse xenograft tumors both decreased. Treatment of cells or tumors with extra rhEPO reversed the above biological effects mediated by shEPO. rhEPO-induced activation of the AKT/GSK-3β/β-catenin pathway and proliferation were abolished by MK-2206.

Conclusions

Our study identified the AKT/GSK-3β/β-catenin axis as a critical mediator of EPO-induced glioma proliferation and further provided a clinically significant dimension to the biology of EPO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

EPO:

Erythropoietin

GSK-3β:

Glycogen synthase kinase-3β

rhEPO:

Recombinant human erythropoietin

siRNA:

Short interfering RNA

MK:

MK-2206

References

  1. Juul SE, Yachnis AT, Christensen RD (1998) Tissue distribution of erythropoietin and erythropoietin receptor in the developing human fetus. Early Hum Dev 52(3):235–249

    Article  CAS  Google Scholar 

  2. Bohlius J, Bohlke K, Lazo-Langner A (2019) Management of cancer-associated anemia with erythropoiesis-stimulating agents: ASCO/ASH clinical practice guideline update. J Oncol Pract 15(7):399–402. https://doi.org/10.1200/JOP.19.00111

    Article  Google Scholar 

  3. Henke M, Laszig R, Rube C, Schafer U, Haase KD, Schilcher B, Mose S, Beer KT, Burger U, Dougherty C, Frommhold H (2003) Erythropoietin to treat head and neck cancer patients with anaemia undergoing radiotherapy: randomised, double-blind, placebo-controlled trial. Lancet 362(9392):1255–1260. https://doi.org/10.1016/S0140-6736(03)14567-9

    Article  CAS  PubMed  Google Scholar 

  4. Leyland-Jones B, Investigators B, Study G (2003) Breast cancer trial with erythropoietin terminated unexpectedly. Lancet Oncol 4(8):459–460

    Article  Google Scholar 

  5. Ghezzi P, Bernaudin M, Bianchi R, Blomgren K, Brines M, Campana W, Cavaletti G, Cerami A, Chopp M, Coleman T, Digicaylioglu M, Ehrenreich H, Erbayraktar S, Erbayraktar Z, Gassmann M, Genc S, Gokmen N, Grasso G, Juul S, Lipton SA, Hand CC, Latini R, Lauria G, Leist M, Newton SS, Petit E, Probert L, Sfacteria A, Siren AL, Talan M, Thiemermann C, Westenbrink D, Yaqoob M, Zhu C (2010) Erythropoietin: not just about erythropoiesis. Lancet 375(9732):2142. https://doi.org/10.1016/S0140-6736(10)60992-0

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pham TD, Ma W, Miller D, Kazakova L, Benchimol S (2019) Erythropoietin inhibits chemotherapy-induced cell death and promotes a senescence-like state in leukemia cells. Cell Death Dis 10(1):22. https://doi.org/10.1038/s41419-018-1274-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Annese T, Tamma R, Ruggieri S, Ribatti D (2019) Erythropoietin in tumor angiogenesis. Exp Cell Res 374(2):266–273. https://doi.org/10.1016/j.yexcr.2018.12.013

    Article  CAS  PubMed  Google Scholar 

  8. He L, Wu S, Hao Q, Dioum EM, Zhang K, Zhang C, Li W, Zhang W, Zhang Y, Zhou J, Pang Z, Zhao L, Ma X, Li M, Zhang Q (2017) Local blockage of self-sustainable erythropoietin signaling suppresses tumor progression in non-small cell lung cancer. Oncotarget 8(47):82352–82365. https://doi.org/10.18632/oncotarget.19354

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yu J, Wang X, Lu Q, Wang J, Li L, Liao X, Zhu W, Lv L, Zhi X, Yu J, Jin Y, Zou Q, Ou Z, Liu X, Zhou P (2018) Extracellular 5'-nucleotidase (CD73) promotes human breast cancer cells growth through AKT/GSK-3beta/beta-catenin/cyclinD1 signaling pathway. Int J Cancer 142(5):959–967. https://doi.org/10.1002/ijc.31112

    Article  CAS  PubMed  Google Scholar 

  10. Lamanuzzi A, Saltarella I, Ferrucci A, Ria R, Ruggieri S, Racanelli V, Rao L, Annese T, Nico B, Vacca A, Ribatti D (2016) Role of erythropoietin in the angiogenic activity of bone marrow endothelial cells of MGUS and multiple myeloma patients. Oncotarget 7(12):14510–14521. https://doi.org/10.18632/oncotarget.7587

    Article  PubMed  PubMed Central  Google Scholar 

  11. Miyake M, Goodison S, Lawton A, Zhang G, Gomes-Giacoia E, Rosser CJ (2013) Erythropoietin is a JAK2 and ERK1/2 effector that can promote renal tumor cell proliferation under hypoxic conditions. J Hematol Oncol 6:65. https://doi.org/10.1186/1756-8722-6-65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro-oncology 17(Suppl 4):iv1–iv62. https://doi.org/10.1093/neuonc/nov189

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang R, Zhang S, Chen X, Li N, Li J, Jia R, Pan Y, Liang H (2018) EIF4A3-induced circular RNA MMP9 (circMMP9) acts as a sponge of miR-124 and promotes glioblastoma multiforme cell tumorigenesis. Mol Cancer 17(1):166. https://doi.org/10.1186/s12943-018-0911-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Peres EA, Valable S, Guillamo JS, Marteau L, Bernaudin JF, Roussel S, Lechapt-Zalcman E, Bernaudin M, Petit E (2011) Targeting the erythropoietin receptor on glioma cells reduces tumour growth. Exp Cell Res 317(16):2321–2332. https://doi.org/10.1016/j.yexcr.2011.06.011

    Article  CAS  PubMed  Google Scholar 

  15. Kawahara Y, Furuta T, Sabit H, Tamai S, Dong Y, Jiapaer S, Zhang J, Zhang G, Oishi M, Miyashita K, Hayashi Y, Nakada M (2019) Ligand-dependent EphB4 activation serves as an anchoring signal in glioma cells. Cancer Lett 449:56–65. https://doi.org/10.1016/j.canlet.2019.02.021

    Article  CAS  PubMed  Google Scholar 

  16. Anai S, Goodison S, Shiverick K, Hirao Y, Brown BD, Rosser CJ (2007) Knock-down of Bcl-2 by antisense oligodeoxynucleotides induces radiosensitization and inhibition of angiogenesis in human PC-3 prostate tumor xenografts. Mol Cancer Ther 6(1):101–111. https://doi.org/10.1158/1535-7163.MCT-06-0367

    Article  CAS  PubMed  Google Scholar 

  17. Chan KK, Matchett KB, Coulter JA, Yuen HF, McCrudden CM, Zhang SD, Irwin GW, Davidson MA, Rulicke T, Schober S, Hengst L, Jaekel H, Platt-Higgins A, Rudland PS, Mills KI, Maxwell P, El-Tanani M, Lappin TR (2017) Erythropoietin drives breast cancer progression by activation of its receptor EPOR. Oncotarget 8(24):38251–38263. https://doi.org/10.18632/oncotarget.16368

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bawadood AS, Al-Abbasi FA, Anwar F, El-Halawany AM, Al-Abd AM (2020) 6-Shogaol suppresses the growth of breast cancer cells by inducing apoptosis and suppressing autophagy via targeting notch signaling pathway. Biomed Pharmacother 128:110302. https://doi.org/10.1016/j.biopha.2020.110302

    Article  CAS  PubMed  Google Scholar 

  19. Zhu Y, Cheng Y, Guo Y, Chen J, Chen F, Luo R, Li A (2016) Protein kinase D2 contributes to TNF-alpha-induced epithelial mesenchymal transition and invasion via the PI3K/GSK-3beta/beta-catenin pathway in hepatocellular carcinoma. Oncotarget 7(5):5327–5341. https://doi.org/10.18632/oncotarget.6633

    Article  PubMed  Google Scholar 

  20. Acs G, Zhang PJ, McGrath CM, Acs P, McBroom J, Mohyeldin A, Liu S, Lu H, Verma A (2003) Hypoxia-inducible erythropoietin signaling in squamous dysplasia and squamous cell carcinoma of the uterine cervix and its potential role in cervical carcinogenesis and tumor progression. Am J Pathol 162(6):1789–1806. https://doi.org/10.1016/S0002-9440(10)64314-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xia W, Spector S, Hardy L, Zhao S, Saluk A, Alemane L, Spector NL (2000) Tumor selective G2/M cell cycle arrest and apoptosis of epithelial and hematological malignancies by BBL22, a benzazepine. Proc Natl Acad Sci USA 97(13):7494–7499

    Article  CAS  Google Scholar 

  22. Wang L, Di L, Noguchi CT (2014) Erythropoietin, a novel versatile player regulating energy metabolism beyond the erythroid system. Int J Biol Sci 10(8):921–939. https://doi.org/10.7150/ijbs.9518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miao S, Wang SM, Cheng X, Li YF, Zhang QS, Li G, He SQ, Chen XP, Wu P (2017) Erythropoietin promoted the proliferation of hepatocellular carcinoma through hypoxia induced translocation of its specific receptor. Cancer Cell Int 17:119. https://doi.org/10.1186/s12935-017-0494-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Roy A, Ansari SA, Das K, Prasad R, Bhattacharya A, Mallik S, Mukherjee A, Sen P (2017) Coagulation factor VIIa-mediated protease-activated receptor 2 activation leads to beta-catenin accumulation via the AKT/GSK3beta pathway and contributes to breast cancer progression. J Biol Chem. https://doi.org/10.1074/jbc.M116.764670

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X (2019) Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer 18(1):26. https://doi.org/10.1186/s12943-019-0954-x

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chong ZZ, Hou J, Shang YC, Wang S, Maiese K (2011) EPO relies upon novel signaling of Wnt1 that requires Akt1, FoxO3a, GSK-3beta, and beta-catenin to foster vascular integrity during experimental diabetes. Curr Neurovas Res 8(2):103–120

    Article  CAS  Google Scholar 

  27. Alao JP (2007) The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mol Cancer 6:24. https://doi.org/10.1186/1476-4598-6-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gao X, Fan L, Li H, Li J, Liu X, Sun R, Yu Z (2016) Hepatic injury is associated with cell cycle arrest and apoptosis with alteration of cyclin A and D1 in ammonium chloride-induced hyperammonemic rats. Exp Ther Med 11(2):427–434. https://doi.org/10.3892/etm.2015.2931

    Article  CAS  PubMed  Google Scholar 

  29. Bachs O, Gallastegui E, Orlando S, Bigas A, Morante-Redolat JM, Serratosa J, Farinas I, Aligue R, Pujol MJ (2018) Role of p27(Kip1) as a transcriptional regulator. Oncotarget 9(40):26259–26278. https://doi.org/10.18632/oncotarget.25447

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Xinggang Zhi for his technical assistance.

Funding

This research was supported by the National Natural Science Funds of China under Awards Nos. 81301630, 81401070 and 81771355, the Science and Technology Research Project of Chongqing Municipal Education Commission, China (Award No. KJ1500219), and the Science and Technology Project of Yuzhong District, Chongqing, China (Award No. 20150108).

Author information

Authors and Affiliations

Authors

Contributions

ZT and GH contributed to the conception and design. All authors had full access to the data and participated in the analysis and interpretation of the data. ZT was responsible for drafting the manuscript. All of the authors reviewed the manuscript before submission. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gang Huo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The primary human brain tumor specimens were obtained from patients who provided informed consent under protocols approved by the Institutional Review Board of the First Affiliated Hospital of Chongqing Medical University. Animal experiments were approved by the Medical Ethics Committee of the First Affiliated Hospital of Chongqing Medical University. All procedures involving mice conformed to the Guide for the Care and Use of Laboratory Animals published by the National Institutes of Health.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Z., Yang, G., Wang, X. et al. AKT/GSK-3β/β-catenin signaling pathway participates in erythropoietin-promoted glioma proliferation. J Neurooncol 149, 231–242 (2020). https://doi.org/10.1007/s11060-020-03602-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03602-9

Keywords

Navigation