Skip to main content

Advertisement

Log in

Identification of novel fusion transcripts in meningioma

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Introduction

Meningiomas are the most common primary intracranial tumor. Recent next generation sequencing analyses have elaborated the molecular drivers of this disease. We aimed to identify and characterize novel fusion genes in meningiomas.

Methods

We performed a secondary analysis of our RNA sequencing data of 145 primary meningioma from 140 patients to detect fusion genes. Semi-quantitative rt-PCR was performed to confirm transcription of the fusion genes in the original tumors. Whole exome sequencing was performed to identify copy number variations within each tumor sample. Comparative RNA seq analysis was performed to assess the clonality of the fusion constructs within the tumor.

Results

We detected six fusion events (NOTCH3-SETBP1, NF2-SPATA13, SLC6A3-AGBL3, PHF19-FOXP2 in two patients, and ITPK1-FBP2) in five out of 145 tumor samples. All but one event (NF2-SPATA13) led to extremely short reading frames, making these events de facto null alleles. Three of the five patients had a history of childhood radiation. Four out of six fusion events were detected in expression type C tumors, which represent the most aggressive meningioma. We validated the presence of the RNA transcripts in the tumor tissue by semi-quantitative RT PCR. All but the two PHF19-FOXP2 fusions demonstrated high degrees of clonality.

Conclusions

Fusion genes occur infrequently in meningiomas and are more likely to be found in tumors with greater degree of genomic instability (expression type C) or in patients with history of cranial irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References:

  1. Achey TS, McEwen CL, Hamm MW (2019) Implementation of a workflow system with electronic verification for preparation of oral syringes. Am J Health Syst Pharm 76(1):S28–S33. https://doi.org/10.1093/ajhp/zxy019

    Article  PubMed  Google Scholar 

  2. Holleczek B, Zampella D, Urbschat S, Sahm F, von Deimling A, Oertel J et al (2019) Incidence, mortality and outcome of meningiomas: a population-based study from Germany. Cancer Epidemiol 62:101562. https://doi.org/10.1016/j.canep.2019.07.001

    Article  PubMed  Google Scholar 

  3. Aghi MK, Carter BS, Cosgrove GR, Ojemann RG, Amin-Hanjani S, Martuza RL et al. (2009) Long-term recurrence rates of atypical meningiomas after gross total resection with or without postoperative adjuvant radiation. Neurosurgery. 64(1):56–60; discussion https://doi.org/10.1227/01.NEU.0000330399.55586.63.

  4. Modha A, Gutin PH (2005) Diagnosis and treatment of atypical and anaplastic meningiomas: a review. Neurosurgery. 57(3):538–50; discussion -50. https://doi.org/10.1227/01.neu.0000170980.47582.a5.

  5. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK et al (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131(6):803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  6. Lee S, Karas PJ, Hadley CC, Bayley VJ, Khan AB, Jalali A et al (2019) The role of merlin/NF2 loss in meningioma biology. Cancers (Basel). https://doi.org/10.3390/cancers11111633

    Article  PubMed  PubMed Central  Google Scholar 

  7. Viaene AN, Zhang B, Martinez-Lage M, Xiang C, Tosi U, Thawani JP et al (2019) Transcriptome signatures associated with meningioma progression. Acta Neuropathol Commun 7(1):67. https://doi.org/10.1186/s40478-019-0690-x

    Article  PubMed  PubMed Central  Google Scholar 

  8. Patel AJ, Wan YW, Al-Ouran R, Revelli JP, Cardenas MF, Oneissi M et al (2019) Molecular profiling predicts meningioma recurrence and reveals loss of DREAM complex repression in aggressive tumors. Proc Natl Acad Sci USA 116(43):21715–21726. https://doi.org/10.1073/pnas.1912858116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pereira BJA, Oba-Shinjo SM, de Almeida AN, Marie SKN (2019) Molecular alterations in meningiomas: Literature review. Clin Neurol Neurosurg 176:89–96. https://doi.org/10.1016/j.clineuro.2018.12.004

    Article  PubMed  Google Scholar 

  10. Clark VE, Erson-Omay EZ, Serin A, Yin J, Cotney J, Ozduman K et al (2013) Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 339(6123):1077–1080. https://doi.org/10.1126/science.1233009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Clark VE, Harmanci AS, Bai H, Youngblood MW, Lee TI, Baranoski JF et al (2016) Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas. Nat Genet 48(10):1253–1259. https://doi.org/10.1038/ng.3651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brastianos PK, Horowitz PM, Santagata S, Jones RT, McKenna A, Getz G et al (2013) Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet 45(3):285–289. https://doi.org/10.1038/ng.2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Edwards PA (2010) Fusion genes and chromosome translocations in the common epithelial cancers. J Pathol 220(2):244–254. https://doi.org/10.1002/path.2632

    Article  CAS  PubMed  Google Scholar 

  14. Parker M, Mohankumar KM, Punchihewa C, Weinlich R, Dalton JD, Li Y et al (2014) C11orf95-RELA fusions drive oncogenic NF-kappaB signalling in ependymoma. Nature 506(7489):451–455. https://doi.org/10.1038/nature13109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Agnihotri S, Suppiah S, Tonge PD, Jalali S, Danesh A, Bruce JP et al (2017) Therapeutic radiation for childhood cancer drives structural aberrations of NF2 in meningiomas. Nat Commun 8(1):186. https://doi.org/10.1038/s41467-017-00174-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McPherson A, Hormozdiari F, Zayed A, Giuliany R, Ha G, Sun MG et al (2011) deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Comput Biol 7(5):e1001138. https://doi.org/10.1371/journal.pcbi.1001138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Harmanci AS, Youngblood MW, Clark VE, Coskun S, Henegariu O, Duran D et al (2017) Integrated genomic analyses of de novo pathways underlying atypical meningiomas. Nat Commun 8:14433. https://doi.org/10.1038/ncomms14433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gutmann DH, Hirbe AC, Haipek CA (2001) Functional analysis of neurofibromatosis 2 (NF2) missense mutations. Hum Mol Genet 10(14):1519–1529. https://doi.org/10.1093/hmg/10.14.1519

    Article  CAS  PubMed  Google Scholar 

  20. Ballare C, Lange M, Lapinaite A, Martin GM, Morey L, Pascual G et al (2012) Phf19 links methylated Lys36 of histone H3 to regulation of polycomb activity. Nat Struct Mol Biol 19(12):1257–1265. https://doi.org/10.1038/nsmb.2434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Louvi A, Arboleda-Velasquez JF, Artavanis-Tsakonas S (2006) CADASIL: a critical look at a Notch disease. Dev Neurosci 28(1–2):5–12. https://doi.org/10.1159/000090748

    Article  CAS  PubMed  Google Scholar 

  22. Mitelman F, Johansson B, Mertens F (2007) The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 7(4):233–245. https://doi.org/10.1038/nrc2091

    Article  CAS  PubMed  Google Scholar 

  23. Ben-Neriah Y, Daley GQ, Mes-Masson AM, Witte ON, Baltimore D (1986) The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science 233(4760):212–214. https://doi.org/10.1126/science.3460176

    Article  CAS  PubMed  Google Scholar 

  24. Robinson DR, Wu YM, Kalyana-Sundaram S, Cao X, Lonigro RJ, Sung YS et al (2013) Identification of recurrent NAB2-STAT6 gene fusions in solitary fibrous tumor by integrative sequencing. Nat Genet 45(2):180–185. https://doi.org/10.1038/ng.2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Haas BJ, Dobin A, Li B, Stransky N, Pochet N, Regev A (2019) Accuracy assessment of fusion transcript detection via read-mapping and de novo fusion transcript assembly-based methods. Genome Biol 20(1):213. https://doi.org/10.1186/s13059-019-1842-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Golub TR, Barker GF, Bohlander SK, Hiebert SW, Ward DC, Bray-Ward P et al (1995) Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci USA 92(11):4917–4921. https://doi.org/10.1073/pnas.92.11.4917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Erickson P, Gao J, Chang KS, Look T, Whisenant E, Raimondi S et al (1992) Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood 80(7):1825–1831

    Article  CAS  PubMed  Google Scholar 

  28. Asthagiri AR, Parry DM, Butman JA, Kim HJ, Tsilou ET, Zhuang Z et al (2009) Neurofibromatosis type 2. Lancet 373(9679):1974–1986. https://doi.org/10.1016/S0140-6736(09)60259-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ahmad Z, Brown CM, Patel AK, Ryan AF, Ongkeko R, Doherty JK (2010) Merlin knockdown in human Schwann cells: clues to vestibular schwannoma tumorigenesis. Otol Neurotol 31(3):460–466. https://doi.org/10.1097/MAO.0b013e3181d2777f

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chow HY, Dong B, Duron SG, Campbell DA, Ong CC, Hoeflich KP et al (2015) Group I Paks as therapeutic targets in NF2-deficient meningioma. Oncotarget 6(4):1981–1994. https://doi.org/10.18632/oncotarget.2810

    Article  PubMed  PubMed Central  Google Scholar 

  31. Striedinger K, VandenBerg SR, Baia GS, McDermott MW, Gutmann DH, Lal A (2008) The neurofibromatosis 2 tumor suppressor gene product, merlin, regulates human meningioma cell growth by signaling through YAP. Neoplasia 10(11):1204–1212. https://doi.org/10.1593/neo.08642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rong R, Tang X, Gutmann DH, Ye K (2004) Neurofibromatosis 2 (NF2) tumor suppressor merlin inhibits phosphatidylinositol 3-kinase through binding to PIKE-L. Proc Natl Acad Sci USA 101(52):18200–18205. https://doi.org/10.1073/pnas.0405971102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bi WL, Prabhu VC, Dunn IF (2018) High-grade meningiomas: biology and implications. Neurosurg Focus 44(4):E2. https://doi.org/10.3171/2017.12.FOCUS17756

    Article  PubMed  Google Scholar 

  34. Collord G, Tarpey P, Kurbatova N, Martincorena I, Moran S, Castro M et al (2018) An integrated genomic analysis of anaplastic meningioma identifies prognostic molecular signatures. Sci Rep 8(1):13537. https://doi.org/10.1038/s41598-018-31659-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chamberlain PP, Qian X, Stiles AR, Cho J, Jones DH, Lesley SA et al (2007) Integration of inositol phosphate signaling pathways via human ITPK1. J Biol Chem 282(38):28117–28125. https://doi.org/10.1074/jbc.M703121200

    Article  CAS  PubMed  Google Scholar 

  36. Huangyang P, Li F, Lee P, Nissim I, Weljie AM, Mancuso A et al (2020) Fructose-1,6-bisphosphatase 2 inhibits sarcoma progression by restraining mitochondrial biogenesis. Cell Metab 31(1):174–188. https://doi.org/10.1016/j.cmet.2019.10.012

    Article  CAS  PubMed  Google Scholar 

  37. Li H, Wang J, Xu H, Xing R, Pan Y, Li W et al (2013) Decreased fructose-1,6-bisphosphatase-2 expression promotes glycolysis and growth in gastric cancer cells. Mol Cancer 12(1):110. https://doi.org/10.1186/1476-4598-12-110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ong CT, Cheng HT, Chang LW, Ohtsuka T, Kageyama R, Stormo GD et al (2006) Target selectivity of vertebrate notch proteins. Collaboration between discrete domains and CSL-binding site architecture determines activation probability. J Biol Chem 281(8):5106–5119. https://doi.org/10.1074/jbc.M506108200

    Article  CAS  PubMed  Google Scholar 

  39. Dotto GP (2008) Notch tumor suppressor function. Oncogene 27(38):5115–5123. https://doi.org/10.1038/onc.2008.225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Park JT, Li M, Nakayama K, Mao TL, Davidson B, Zhang Z et al (2006) Notch3 gene amplification in ovarian cancer. Cancer Res 66(12):6312–6318. https://doi.org/10.1158/0008-5472.CAN-05-3610

    Article  CAS  PubMed  Google Scholar 

  41. Dang TP, Gazdar AF, Virmani AK, Sepetavec T, Hande KR, Minna JD et al (2000) Chromosome 19 translocation, overexpression of Notch3, and human lung cancer. J Natl Cancer Inst 92(16):1355–1357. https://doi.org/10.1093/jnci/92.16.1355

    Article  CAS  PubMed  Google Scholar 

  42. Cui H, Kong Y, Xu M, Zhang H (2013) Notch3 functions as a tumor suppressor by controlling cellular senescence. Cancer Res 73(11):3451–3459. https://doi.org/10.1158/0008-5472.CAN-12-3902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Papaioannou MD, Djuric U, Kao J, Karimi S, Zadeh G, Aldape K et al (2019) Proteomic analysis of meningiomas reveals clinically-distinct molecular patterns. Neuro-Oncology. https://doi.org/10.1093/neuonc/noz084

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cuevas IC, Slocum AL, Jun P, Costello JF, Bollen AW, Riggins GJ et al (2005) Meningioma transcript profiles reveal deregulated Notch signaling pathway. Cancer Res 65(12):5070–5075. https://doi.org/10.1158/0008-5472.CAN-05-0240

    Article  CAS  PubMed  Google Scholar 

  45. Baia GS, Stifani S, Kimura ET, McDermott MW, Pieper RO, Lal A (2008) Notch activation is associated with tetraploidy and enhanced chromosomal instability in meningiomas. Neoplasia 10(6):604–612. https://doi.org/10.1593/neo.08356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cristobal I, Blanco FJ, Garcia-Orti L, Marcotegui N, Vicente C, Rifon J et al (2010) SETBP1 overexpression is a novel leukemogenic mechanism that predicts adverse outcome in elderly patients with acute myeloid leukemia. Blood 115(3):615–625. https://doi.org/10.1182/blood-2009-06-227363

    Article  CAS  PubMed  Google Scholar 

  47. Shou LH, Cao D, Dong XH, Fang Q, Wu Y, Zhang Y et al (2017) Prognostic significance of SETBP1 mutations in myelodysplastic syndromes, chronic myelomonocytic leukemia, and chronic neutrophilic leukemia: a meta-analysis. PLoS ONE 12(2):e0171608. https://doi.org/10.1371/journal.pone.0171608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chang X, Shi L, Gao F, Russin J, Zeng L, He S et al (2013) Genomic and transcriptome analysis revealing an oncogenic functional module in meningiomas. Neurosurg Focus 35(6):E3. https://doi.org/10.3171/2013.10.FOCUS13326

    Article  PubMed  Google Scholar 

  49. Vandenbergh DJ, Persico AM, Hawkins AL, Griffin CA, Li X, Jabs EW et al (1992) Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics 14(4):1104–1106. https://doi.org/10.1016/s0888-7543(05)80138-7

    Article  CAS  PubMed  Google Scholar 

  50. Torres GE, Gainetdinov RR, Caron MG (2003) Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 4(1):13–25. https://doi.org/10.1038/nrn1008

    Article  CAS  PubMed  Google Scholar 

  51. Petrera A, Lai ZW, Schilling O (2014) Carboxyterminal protein processing in health and disease: key actors and emerging technologies. J Proteome Res 13(11):4497–4504. https://doi.org/10.1021/pr5005746

    Article  CAS  PubMed  Google Scholar 

  52. Rodriguez de la Vega M, Sevilla RG, Hermoso A, Lorenzo J, Tanco S, Diez A et al (2007) Nna1-like proteins are active metallocarboxypeptidases of a new and diverse M14 subfamily. FASEB J. 21(3):851–865. https://doi.org/10.1096/fj.06-7330com

    Article  CAS  PubMed  Google Scholar 

  53. Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability–an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11(3):220–228. https://doi.org/10.1038/nrm2858

    Article  CAS  PubMed  Google Scholar 

  54. Bi WL, Greenwald NF, Abedalthagafi M, Wala J, Gibson WJ, Agarwalla PK et al (2017) Genomic landscape of high-grade meningiomas. NPJ Genom Med. https://doi.org/10.1038/s41525-017-0014-7

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chen S, Liu M, Huang T, Liao W, Xu M, Gu J (2018) GeneFuse: detection and visualization of target gene fusions from DNA sequencing data. Int J Biol Sci 14(8):843–848. https://doi.org/10.7150/ijbs.24626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cardis E, Hatch M (2011) The Chernobyl accident: an epidemiological perspective. Clin Oncol (R Coll Radiol) 23(4):251–260. https://doi.org/10.1016/j.clon.2011.01.510

    Article  CAS  Google Scholar 

Download references

Funding

Parts of this study were funded by the Roderick D. MacDonald Fund, the Jan and Dan Duncan Neurologic Research Institute at Texas Children’s Hospital, and the Hamill Foundation. A.J.P. is supported by a K08 award by the National Institute of Neurological Disorders and Stroke (K08NS102474). The Human Tissue Acquisition and Pathology Core at Baylor College of Medicine is funded through P30 Cancer Center Support Grant NCI-CA125123.

Author information

Authors and Affiliations

Authors

Contributions

ABK., TJK, and AJP designed the research. ABK, RG, AS, CCH, JCBV, MC, DAW, TJK, and AJP performed the research. ABK, MC, ASH, AOH, DAW, TJK, and AJP. analyzed the data. ABK, TJK, DAW, and AJP wrote the paper.

Corresponding authors

Correspondence to Tiemo J. Klisch or Akash J. Patel.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.B., Gadot, R., Shetty, A. et al. Identification of novel fusion transcripts in meningioma. J Neurooncol 149, 219–230 (2020). https://doi.org/10.1007/s11060-020-03599-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03599-1

Keywords

Navigation