Skip to main content

Advertisement

Log in

Immune checkpoint inhibition for pediatric patients with recurrent/refractory CNS tumors: a single institution experience

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Introduction

Immune checkpoint inhibition through PD-1 and CTLA-4 blockade has shown efficacy in some adult malignancies and generated interest in pediatrics, including central nervous system (CNS) tumors. We describe our experience with immune checkpoint inhibition in recurrent/refractory pediatric CNS tumors.

Methods

We performed a retrospective chart review of pediatric patients with recurrent or refractory CNS tumors treated with ipilimumab, nivolumab and/or pembrolizumab at Dana-Farber/Boston Children’s Hospital between 2018 and 2019.

Results

Eleven patients were identified. Diagnoses included diffuse intrinsic pontine glioma (DIPG) (n = 2), high-grade glioma (HGG) (n = 5), ependymoma (n = 1), craniopharyngioma (n = 1), high-grade neuroepithelial tumor (n = 1) and non-germinomatous germ cell tumor (NGGCT) (n = 1). Eight patients had recurrent disease, while three had refractory disease. Nine patients received combination therapy (ipilimumab/nivolumab); two patients received either nivolumab or pembrolizumab. Median time from diagnosis-to-treatment was 8 months (range 0.8–156). All patients received prior radiation therapy (RT), with median time from RT-to-immunotherapy was 3.8 years. One patient received concurrent then adjuvant immunotherapy with RT. Median duration of treatment was 6.1 months (range 1–25). Therapy was discontinued in nine patients: seven due to disease progression and two due to toxicity (colitis; transaminitis). Other pertinent toxicities included Type 1 diabetes mellitus, hypothyroidism and skin toxicity. Based on iRANO criteria, best responses included partial response (n = 3), stable disease (n = 7) and progressive disease (n = 1). Durable response was noted in two patients.

Conclusion

Immune checkpoint inhibition was relatively well tolerated in a cohort of pediatric patients spanning several CNS tumor diagnoses. Results from prospective clinical trials will be critical to inform clinical decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264. https://doi.org/10.1038/nrc3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Johnson DB, Sullivan RJ, Menzies AM (2017) Immune checkpoint inhibitors in challenging populations. Cancer 123:1904–1911. https://doi.org/10.1002/cncr.30642

    Article  PubMed  Google Scholar 

  3. Teng F, Meng X, Kong L, Yu J (2018) Progress and challenges of predictive biomarkers of anti PD-1/PD-L1 immunotherapy: a systematic review. Cancer Lett 414:166–173. https://doi.org/10.1016/j.canlet.2017.11.014

    Article  CAS  PubMed  Google Scholar 

  4. Wang SS, Bandopadhayay P, Jenkins MR (2019) Towards immunotherapy for pediatric brain tumors. Trends Immunol 40:748–761. https://doi.org/10.1016/j.it.2019.05.009

    Article  CAS  PubMed  Google Scholar 

  5. Graziani G, Tentori L, Navarra P (2012) Ipilimumab: a novel immunostimulatory monoclonal antibody for the treatment of cancer. Pharmacol Res 65:9–22. https://doi.org/10.1016/j.phrs.2011.09.002

    Article  CAS  PubMed  Google Scholar 

  6. Sabel M, Fleischhack G, Tippelt S, Gustafsson G, Doz F, Kortmann R, Massimino M, Navajas A, von Hoff K, Rutkowski S, Warmuth-Metz M, Clifford SC, Pietsch T, Pizer B, Lannering B, Group S-EBT (2016) Relapse patterns and outcome after relapse in standard risk medulloblastoma: a report from the HIT-SIOP-PNET4 study. J Neurooncol 129:515–524. https://doi.org/10.1007/s11060-016-2202-1

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kline C, Felton E, Allen IE, Tahir P, Mueller S (2018) Survival outcomes in pediatric recurrent high-grade glioma: results of a 20-year systematic review and meta-analysis. J Neurooncol 137:103–110. https://doi.org/10.1007/s11060-017-2701-8

    Article  PubMed  Google Scholar 

  8. Filley AC, Henriquez M, Dey M (2017) Recurrent glioma clinical trial, CheckMate-143: the game is not over yet. Oncotarget 8:91779–91794. https://doi.org/10.18632/oncotarget.21586

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bristol-Myers Squibb provides update on phase 3 Opdivo (nivolumab) checkmate -548 trial in patients with newly diagnosed MGMT-methylated glioblastoma multiforme. Bristol-Myers Squibb Company, Princeton, NJ. https://bit.ly/2ktBxYb. Accessed 5 Sept 2019

  10. Cloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH, Davidson TB, Wang AC, Ellingson BM, Rytlewski JA, Sanders CM, Kawaguchi ES, Du L, Li G, Yong WH, Gaffey SC, Cohen AL, Mellinghoff IK, Lee EQ, Reardon DA, O’Brien BJ, Butowski NA, Nghiemphu PL, Clarke JL, Arrillaga-Romany IC, Colman H, Kaley TJ, de Groot JF, Liau LM, Wen PY, Prins RM (2019) Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med 25:477–486. https://doi.org/10.1038/s41591-018-0337-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Merchant MS, Wright M, Baird K, Wexler LH, Rodriguez-Galindo C, Bernstein D, Delbrook C, Lodish M, Bishop R, Wolchok JD, Streicher H, Mackall CL (2016) Phase I clinical trial of ipilimumab in pediatric patients with advanced solid tumors. Clin Cancer Res 22:1364–1370. https://doi.org/10.1158/1078-0432.CCR-15-0491

    Article  CAS  PubMed  Google Scholar 

  12. Gorsi HS, Malicki DM, Barsan V, Tumblin M, Yeh-Nayre L, Milburn M, Elster JD, Crawford JR (2019) Nivolumab in the treatment of recurrent or refractory pediatric brain tumors: a single institutional experience. J Pediatr Hematol Oncol 41:e235–e241. https://doi.org/10.1097/MPH.0000000000001339

    Article  CAS  PubMed  Google Scholar 

  13. Blumenthal DT, Yalon M, Vainer GW, Lossos A, Yust S, Tzach L, Cagnano E, Limon D, Bokstein F (2016) Pembrolizumab: first experience with recurrent primary central nervous system (CNS) tumors. J Neurooncol 129:453–460. https://doi.org/10.1007/s11060-016-2190-1

    Article  CAS  PubMed  Google Scholar 

  14. Hwang E, Onar A, Young-Poussaint T, Mitchell D, Kilburn L, Margol A, Gilheeny S, Lin T, Dunkel I, Fouladi M (2018) IMMU-09, Outcome of patients with recurrent diffuse intrinsic pontine glioma (DIPG) treated with pembrolizumab (ANTI-PD-1): a pediatric brain tumor consortium study (PBTC045). Neuro-Oncology 20(Suppl 2):i100. https://doi.org/10.1093/neuonc/noy059.325

    Article  PubMed Central  Google Scholar 

  15. Garcia EP, Minkovsky A, Jia Y, Ducar MD, Shivdasani P, Gong X, Ligon AH, Sholl LM, Kuo FC, MacConaill LE, Lindeman NI, Dong F (2017) Validation of OncoPanel: a targeted next-generation sequencing assay for the detection of somatic variants in cancer. Arch Pathol Lab Med 141:751–758. https://doi.org/10.5858/arpa.2016-0527-OA

    Article  CAS  PubMed  Google Scholar 

  16. Okada H, Weller M, Huang R, Finocchiaro G, Gilbert MR, Wick W, Ellingson BM, Hashimoto N, Pollack IF, Brandes AA, Franceschi E, Herold-Mende C, Nayak L, Panigrahy A, Pope WB, Prins R, Sampson JH, Wen PY, Reardon DA (2015) Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncol 16:e534–e542. https://doi.org/10.1016/S1470-2045(15)00088-1

    Article  PubMed  PubMed Central  Google Scholar 

  17. Modak S, Gardner S, Dunkel IJ, Balmaceda C, Rosenblum MK, Miller DC, Halpern S, Finlay JL (2004) Thiotepa-based high-dose chemotherapy with autologous stem-cell rescue in patients with recurrent or progressive CNS germ cell tumors. J Clin Oncol 22:1934–1943. https://doi.org/10.1200/JCO.2004.11.053

    Article  CAS  PubMed  Google Scholar 

  18. Haslam A, Prasad V (2019) Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw Open 2:e192535. https://doi.org/10.1001/jamanetworkopen.2019.2535

    Article  PubMed  PubMed Central  Google Scholar 

  19. Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, Linette GP, Meyer N, Giguere JK, Agarwala SS, Shaheen M, Ernstoff MS, Minor D, Salama AK, Taylor M, Ott PA, Rollin LM, Horak C, Gagnier P, Wolchok JD, Hodi FS (2015) Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 372:2006–2017. https://doi.org/10.1056/NEJMoa1414428

    Article  PubMed  PubMed Central  Google Scholar 

  20. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M, Larkin J, Lorigan P, Neyns B, Blank CU, Hamid O, Mateus C, Shapira-Frommer R, Kosh M, Zhou H, Ibrahim N, Ebbinghaus S, Ribas A, Investigators K (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372:2521–2532. https://doi.org/10.1056/NEJMoa1503093

    Article  CAS  PubMed  Google Scholar 

  21. Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, Hoeller C, Khushalani NI, Miller WH, Lao CD, Linette GP, Thomas L, Lorigan P, Grossmann KF, Hassel JC, Maio M, Sznol M, Ascierto PA, Mohr P, Chmielowski B, Bryce A, Svane IM, Grob JJ, Krackhardt AM, Horak C, Lambert A, Yang AS, Larkin J (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16:375–384. https://doi.org/10.1016/S1470-2045(15)70076-8

    Article  CAS  PubMed  Google Scholar 

  22. Spain L, Diem S, Larkin J (2016) Management of toxicities of immune checkpoint inhibitors. Cancer Treat Rev 44:51–60. https://doi.org/10.1016/j.ctrv.2016.02.001

    Article  CAS  PubMed  Google Scholar 

  23. Eggermont AM, Chiarion-Sileni V, Grob JJ, Dummer R, Wolchok JD, Schmidt H, Hamid O, Robert C, Ascierto PA, Richards JM, Lebbé C, Ferraresi V, Smylie M, Weber JS, Maio M, Konto C, Hoos A, de Pril V, Gurunath RK, de Schaetzen G, Suciu S, Testori A (2015) Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol 16:522–530. https://doi.org/10.1016/S1470-2045(15)70122-1

    Article  CAS  PubMed  Google Scholar 

  24. Robert C, Ribas A, Schachter J, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, McNeil CM, Lotem M, Larkin JMG, Lorigan P, Neyns B, Blank CU, Petrella TM, Hamid O, Su SC, Krepler C, Ibrahim N, Long GV (2019) Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol 20:1239–1251. https://doi.org/10.1016/S1470-2045(19)30388-2

    Article  CAS  PubMed  Google Scholar 

  25. Larkin J, Hodi FS, Wolchok JD (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373:1270–1271. https://doi.org/10.1056/NEJMc1509660

    Article  PubMed  Google Scholar 

  26. Motzer RJ, Tannir NM, McDermott DF, Arén Frontera O, Melichar B, Choueiri TK, Plimack ER, Barthélémy P, Porta C, George S, Powles T, Donskov F, Neiman V, Kollmannsberger CK, Salman P, Gurney H, Hawkins R, Ravaud A, Grimm MO, Bracarda S, Barrios CH, Tomita Y, Castellano D, Rini BI, Chen AC, Mekan S, McHenry MB, Wind-Rotolo M, Doan J, Sharma P, Hammers HJ, Escudier B, Investigators C (2018) Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med 378:1277–1290. https://doi.org/10.1056/NEJMoa1712126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Davis KL, Fox E, Merchant MS, Reid JM, Kudgus RA, Liu X, Minard CG, Voss S, Berg SL, Weigel BJ, Mackall CL (2020) Nivolumab in children and young adults with relapsed or refractory solid tumours or lymphoma (ADVL1412): a multicentre, open-label, single-arm, phase 1-2 trial. Lancet Oncol 21:541–550. https://doi.org/10.1016/S1470-2045(20)30023-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Freeman-Keller M, Kim Y, Cronin H, Richards A, Gibney G, Weber JS (2016) Nivolumab in resected and unresectable metastatic melanoma: characteristics of immune-related adverse events and association with outcomes. Clin Cancer Res 22:886–894. https://doi.org/10.1158/1078-0432.CCR-15-1136

    Article  CAS  PubMed  Google Scholar 

  29. Haratani K, Hayashi H, Chiba Y, Kudo K, Yonesaka K, Kato R, Kaneda H, Hasegawa Y, Tanaka K, Takeda M, Nakagawa K (2018) Association of immune-related adverse events with nivolumab efficacy in non-small-cell lung cancer. JAMA Oncol 4:374–378. https://doi.org/10.1001/jamaoncol.2017.2925

    Article  PubMed  Google Scholar 

  30. Xing P, Zhang F, Wang G, Xu Y, Li C, Wang S, Guo Y, Cai S, Wang Y, Li J (2019) Incidence rates of immune-related adverse events and their correlation with response in advanced solid tumours treated with NIVO or NIVO + IPI: a systematic review and meta-analysis. J Immunother Cancer 7:341. https://doi.org/10.1186/s40425-019-0779-6

    Article  PubMed  PubMed Central  Google Scholar 

  31. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoué F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pagès F (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964. https://doi.org/10.1126/science.1129139

    Article  CAS  PubMed  Google Scholar 

  32. Fridman WH, Pagès F, Sautès-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306. https://doi.org/10.1038/nrc3245

    Article  CAS  PubMed  Google Scholar 

  33. Pagès F, Mlecnik B, Marliot F, Bindea G, Ou FS, Bifulco C, Lugli A, Zlobec I, Rau TT, Berger MD, Nagtegaal ID, Vink-Börger E, Hartmann A, Geppert C, Kolwelter J, Merkel S, Grützmann R, Van den Eynde M, Jouret-Mourin A, Kartheuser A, Léonard D, Remue C, Wang JY, Bavi P, Roehrl MHA, Ohashi PS, Nguyen LT, Han S, MacGregor HL, Hafezi-Bakhtiari S, Wouters BG, Masucci GV, Andersson EK, Zavadova E, Vocka M, Spacek J, Petruzelka L, Konopasek B, Dundr P, Skalova H, Nemejcova K, Botti G, Tatangelo F, Delrio P, Ciliberto G, Maio M, Laghi L, Grizzi F, Fredriksen T, Buttard B, Angelova M, Vasaturo A, Maby P, Church SE, Angell HK, Lafontaine L, Bruni D, El Sissy C, Haicheur N, Kirilovsky A, Berger A, Lagorce C, Meyers JP, Paustian C, Feng Z, Ballesteros-Merino C, Dijkstra J, van de Water C, van Lent-van Vliet S, Knijn N, Mușină AM, Scripcariu DV, Popivanova B, Xu M, Fujita T, Hazama S, Suzuki N, Nagano H, Okuno K, Torigoe T, Sato N, Furuhata T, Takemasa I, Itoh K, Patel PS, Vora HH, Shah B, Patel JB, Rajvik KN, Pandya SJ, Shukla SN, Wang Y, Wang Y, Zhang G, Kawakami Y, Marincola FM, Ascierto PA, Sargent DJ, Fox BA, Galon J (2018) International validation of the consensus immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391:2128–2139. https://doi.org/10.1016/S0140-6736(18)30789-X

    Article  PubMed  Google Scholar 

  34. Liu B, Arakawa Y, Yokogawa R, Tokunaga S, Terada Y, Murata D, Matsui Y, Fujimoto KI, Fukui N, Tanji M, Mineharu Y, Minamiguchi S, Miyamoto S (2018) PD-1/PD-L1 expression in a series of intracranial germinoma and its association with Foxp3 + and CD8 + infiltrating lymphocytes. PLoS ONE 13:e0194594. https://doi.org/10.1371/journal.pone.0194594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wildeman ME, Shepard MJ, Oldfield EH, Lopes MBS (2018) Central nervous system germinomas express programmed death ligand 1. J Neuropathol Exp Neurol 77:312–316. https://doi.org/10.1093/jnen/nly008

    Article  PubMed  Google Scholar 

  36. Willis SN, Mallozzi SS, Rodig SJ, Cronk KM, McArdel SL, Caron T, Pinkus GS, Lovato L, Shampain KL, Anderson DE, Anderson RC, Bruce JN, O’Connor KC (2009) The microenvironment of germ cell tumors harbors a prominent antigen-driven humoral response. J Immunol 182:3310–3317. https://doi.org/10.4049/jimmunol.0803424

    Article  CAS  PubMed  Google Scholar 

  37. Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G, Zitvogel L (2016) Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol 27:1482–1492. https://doi.org/10.1093/annonc/mdw168

    Article  CAS  PubMed  Google Scholar 

  38. Chan AK, Shi ZF, Lo KW, Ng HK, Lau CC (2019) P14.47 Tissue immune markers for central nervous system germinoma. Neuro-Oncology 21:377–378. https://doi.org/10.1093/neuonc/noz126.282

    Article  Google Scholar 

  39. Boldrini R, De Pasquale MD, Melaiu O, Chierici M, Jurman G, Benedetti MC, Salfi NC, Castellano A, Collini P, Furlanello C, Pistoia V, Cifaldi L, Terenziani M, Fruci D (2019) Tumor-infiltrating T cells and PD-L1 expression in childhood malignant extracranial germ-cell tumors. Oncoimmunology 8:e1542245. https://doi.org/10.1080/2162402X.2018.1542245

    Article  PubMed  Google Scholar 

  40. Steuer CE, Ramalingam SS (2018) Tumor mutation burden: leading immunotherapy to the era of precision medicine? J Clin Oncol 36:631–632. https://doi.org/10.1200/JCO.2017.76.8770

    Article  CAS  PubMed  Google Scholar 

  41. Galuppini F, Dal Pozzo CA, Deckert J, Loupakis F, Fassan M, Baffa R (2019) Tumor mutation burden: from comprehensive mutational screening to the clinic. Cancer Cell Int 19:209. https://doi.org/10.1186/s12935-019-0929-4

    Article  PubMed  PubMed Central  Google Scholar 

  42. Droeser RA, Hirt C, Viehl CT, Frey DM, Nebiker C, Huber X, Zlobec I, Eppenberger-Castori S, Tzankov A, Rosso R, Zuber M, Muraro MG, Amicarella F, Cremonesi E, Heberer M, Iezzi G, Lugli A, Terracciano L, Sconocchia G, Oertli D, Spagnoli GC, Tornillo L (2013) Clinical impact of programmed cell death ligand 1 expression in colorectal cancer. Eur J Cancer 49:2233–2242. https://doi.org/10.1016/j.ejca.2013.02.015

    Article  CAS  PubMed  Google Scholar 

  43. Schalper KA, Velcheti V, Carvajal D, Wimberly H, Brown J, Pusztai L, Rimm DL (2014) In situ tumor PD-L1 mRNA expression is associated with increased TILs and better outcome in breast carcinomas. Clin Cancer Res 20:2773–2782. https://doi.org/10.1158/1078-0432.CCR-13-2702

    Article  CAS  PubMed  Google Scholar 

  44. Mino-Kenudson M (2016) Programmed cell death ligand-1 (PD-L1) expression by immunohistochemistry: could it be predictive and/or prognostic in non-small cell lung cancer? Cancer Biol Med 13:157–170. https://doi.org/10.20892/j.issn.2095-3941.2016.0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hwang K, Koh EJ, Choi EJ, Kang TH, Han JH, Choe G, Park SH, Yearley JH, Annamalai L, Blumenschein W, Sathe M, McClanahan T, Jung H, Wang KC, Kim SK, Kim CY (2018) PD-1/PD-L1 and immune-related gene expression pattern in pediatric malignant brain tumors: clinical correlation with survival data in Korean population. J Neurooncol 139:281–291. https://doi.org/10.1007/s11060-018-2886-5

    Article  CAS  PubMed  Google Scholar 

  46. Gubin MM, Schreiber RD (2015) CANCER. The odds of immunotherapy success. Science 350:158–159. https://doi.org/10.1126/science.aad4140

    Article  CAS  PubMed  Google Scholar 

  47. Bouffet E, Larouche V, Campbell BB, Merico D, de Borja R, Aronson M, Durno C, Krueger J, Cabric V, Ramaswamy V, Zhukova N, Mason G, Farah R, Afzal S, Yalon M, Rechavi G, Magimairajan V, Walsh MF, Constantini S, Dvir R, Elhasid R, Reddy A, Osborn M, Sullivan M, Hansford J, Dodgshun A, Klauber-Demore N, Peterson L, Patel S, Lindhorst S, Atkinson J, Cohen Z, Laframboise R, Dirks P, Taylor M, Malkin D, Albrecht S, Dudley RW, Jabado N, Hawkins CE, Shlien A, Tabori U (2016) Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol 34:2206–2211. https://doi.org/10.1200/JCO.2016.66.6552

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No external funding to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kee Kiat Yeo.

Ethics declarations

Conflict of interest

No conflicts of interests or competing interests to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cacciotti, C., Choi, J., Alexandrescu, S. et al. Immune checkpoint inhibition for pediatric patients with recurrent/refractory CNS tumors: a single institution experience. J Neurooncol 149, 113–122 (2020). https://doi.org/10.1007/s11060-020-03578-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03578-6

Keywords

Navigation