Postoperative outcomes following glioblastoma resection using a robot-assisted digital surgical exoscope: a case series

Abstract

Introduction

Maximal extent of resection (EOR) of glioblastoma (GBM) is associated with greater progression free survival (PFS) and improved patient outcomes. Recently, a novel surgical system has been developed that includes a 2D, robotically-controlled exoscope and brain tractography display. The purpose of this study was to assess outcomes in a series of patients with GBM undergoing resections using this surgical exoscope.

Methods

A retrospective review was conducted for robotic exoscope assisted GBM resections between 2017 and 2019. EOR was computed from volumetric analyses of pre- and post-operative MRIs. Demographics, pathology/MGMT status, imaging, treatment, and outcomes data were collected. The relationship between these perioperative variables and discharge disposition as well as progression-free survival (PFS) was explored.

Results

A total of 26 patients with GBM (median age = 57 years) met inclusion criteria, comprising a total of 28 cases. Of these, 22 (79%) tumors were in eloquent regions, most commonly in the frontal lobe (14 cases, 50%). The median pre- and post-operative volumes were 24.0 cc and 1.3 cc, respectively. The median extent of resection for the cohort was 94.8%, with 86% achieving 6-month PFS. The most common neurological complication was a motor deficit followed by sensory loss, while 8 patients (29%) were symptom-free.

Conclusions

The robotic exoscope is safe and effective for patients undergoing GBM surgery, with a majority achieving large-volume resections. These patients experienced complication profiles similar to those undergoing treatment with the traditional microscope. Further studies are needed to assess direct comparisons between exoscope and microscope-assisted GBM resection.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. https://doi.org/10.1056/NEJMoa043330

    CAS  Article  Google Scholar 

  2. 2.

    Cummings SM, Savitz LA, Konrad TR (2001) Reported response rates to mailed physician questionnaires. Health Serv Res 35(6):1347–1355

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Fernandes C, Costa A, Osório L et al (2017) Current standards of care in glioblastoma therapy. In: De Vleeschouwer S (ed) Glioblastoma. Codon Publications, Brisbane

    Google Scholar 

  4. 4.

    Chaichana KL, Jusue-Torres I, Navarro-Ramirez R et al (2014) Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma. Neuro-Oncol 16(1):113–122. https://doi.org/10.1093/neuonc/not137

    Article  PubMed  Google Scholar 

  5. 5.

    Majewska P, Ioannidis S, Raza MH, Tanna N, Bulbeck H, Williams M (2017) Postprogression survival in patients with glioblastoma treated with concurrent chemoradiotherapy: a routine care cohort study. CNS Oncol 6(4):307–313. https://doi.org/10.2217/cns-2017-0001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Brown TJ, Brennan MC, Li M et al (2016) Association of the extent of resection with survival in glioblastoma: a systematic review and meta-analysis. JAMA Oncol 2(11):1460–1469. https://doi.org/10.1001/jamaoncol.2016.1373

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Stummer W (2015) Response to journal club: 5-aminolevulinic acid-derived tumor fluorescence: the diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging. Neurosurgery 76(2):230–231. https://doi.org/10.1227/NEU.0000000000000629

    Article  PubMed  Google Scholar 

  8. 8.

    Young RM, Jamshidi A, Davis G, Sherman JH (2015) Current trends in the surgical management and treatment of adult glioblastoma. Ann Transl Med 3(9):121. https://doi.org/10.3978/j.issn.2305-5839.2015.05.10

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Haj A, Doenitz C, Schebesch K-M et al (2017) Extent of resection in newly diagnosed glioblastoma: impact of a specialized neuro-oncology care center. Brain Sci. https://doi.org/10.3390/brainsci8010005

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Lacroix M, Abi-Said D, Fourney DR et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95(2):190–198. https://doi.org/10.3171/jns.2001.95.2.0190

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Sanai N, Polley M-Y, McDermott MW, Parsa AT, Berger MS (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115(1):3–8. https://doi.org/10.3171/2011.2.jns10998

    Article  PubMed  Google Scholar 

  12. 12.

    Orringer D, Lau D, Khatri S et al (2012) Extent of resection in patients with glioblastoma: limiting factors, perception of resectability, and effect on survival. J Neurosurg 117(5):851–859. https://doi.org/10.3171/2012.8.JNS12234

    Article  PubMed  Google Scholar 

  13. 13.

    Chaichana KL, Cabrera-Aldana EE, Jusue-Torres I et al (2014) When gross total resection of a glioblastoma is possible, how much resection should be achieved? World Neurosurg 82(1–2):e257–265. https://doi.org/10.1016/j.wneu.2014.01.019

    Article  PubMed  Google Scholar 

  14. 14.

    Li YM, Suki D, Hess K, Sawaya R (2016) The influence of maximum safe resection of glioblastoma on survival in 1229 patients: can we do better than gross-total resection? J Neurosurg 124(4):977–988. https://doi.org/10.3171/2015.5.JNS142087

    Article  PubMed  Google Scholar 

  15. 15.

    Jermyn M, Mok K, Mercier J et al (2015) Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci Transl Med. 7(274):274ra19–274ra19. https://doi.org/10.1126/scitranslmed.aaa2384

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Zhang DY, Singhal S, Lee JYK (2019) Optical principles of fluorescence-guided brain tumor surgery: a practical primer for the neurosurgeon. Neurosurgery 85(3):312–324. https://doi.org/10.1093/neuros/nyy315

    Article  PubMed  Google Scholar 

  17. 17.

    Acerbi F, Broggi M, Schebesch K-M et al (2018) Fluorescein-guided surgery for resection of high-grade gliomas: a multicentric prospective Phase II Study (FLUOGLIO). Clin Cancer Res 24(1):52–61. https://doi.org/10.1158/1078-0432.CCR-17-1184

    Article  PubMed  Google Scholar 

  18. 18.

    Díez Valle R, Hadjipanayis CG, Stummer W (2019) Established and emerging uses of 5-ALA in the brain: an overview. J Neurooncol 141(3):487–494. https://doi.org/10.1007/s11060-018-03087-7

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Hadjipanayis CG, Stummer W, Sheehan JP (2019) 5-ALA fluorescence-guided surgery of CNS tumors. J Neurooncol 141(3):477–478. https://doi.org/10.1007/s11060-019-03109-y

    Article  PubMed  Google Scholar 

  20. 20.

    Doglietto F, Belotti F, Panciani P, Poliani PL, Fontanella MM (2020) High-definition 3-dimensional exoscope for 5-ALA glioma surgery: 3-dimensional operative video. Oper Neurosurg. https://doi.org/10.1093/ons/opz139

    Article  Google Scholar 

  21. 21.

    Oertel JM, Burkhardt BW (2017) Vitom-3D for exoscopic neurosurgery: initial experience in cranial and spinal procedures. World Neurosurg 105:153–162. https://doi.org/10.1016/j.wneu.2017.05.109

    Article  PubMed  Google Scholar 

  22. 22.

    Langer DJ, White TG, Schulder M, Boockvar JA, Labib M, Lawton MT (2019) Advances in intraoperative optics: a brief review of current exoscope platforms. Oper Neurosurg Hagerstown. https://doi.org/10.1093/ons/opz276

    Article  PubMed  Google Scholar 

  23. 23.

    Beez T, Munoz-Bendix C, Beseoglu K, Steiger H-J, Ahmadi SA (2018) First clinical applications of a high-definition three-dimensional exoscope in pediatric neurosurgery. Cureus 10(1):e2108. https://doi.org/10.7759/cureus.2108

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Muhammad S, Lehecka M, Niemelä M (2019) Preliminary experience with a digital robotic exoscope in cranial and spinal surgery: a review of the Synaptive Modus V system. Acta Neurochir (Wien) 161(10):2175–2180. https://doi.org/10.1007/s00701-019-03953-x

    Article  Google Scholar 

  25. 25.

    Waqas M, Enam SA, Hashmi FA, Mubarak F, Arain F (2017) Video microscope robotic arm-assisted, neuronavigation-guided glioma resection and regional sampling. Cureus 9(10):e1738. https://doi.org/10.7759/cureus.1738

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Ottenhausen M, Krieg SM, Meyer B, Ringel F (2015) Functional preoperative and intraoperative mapping and monitoring: increasing safety and efficacy in glioma surgery. Neurosurg Focus 38(1):E3. https://doi.org/10.3171/2014.10.FOCUS14611

    Article  PubMed  Google Scholar 

  27. 27.

    Lakomkin N, Hadjipanayis CG (2018) Fluorescence-guided surgery for high-grade gliomas. J Surg Oncol 118(2):356–361. https://doi.org/10.1002/jso.25154

    Article  PubMed  Google Scholar 

  28. 28.

    Hatiboglu MA, Weinberg JS, Suki D et al (2009) Impact of intraoperative high-field magnetic resonance imaging guidance on glioma surgery: a prospective volumetric analysis. Neurosurgery. 64(6):1073–1081. https://doi.org/10.1227/01.NEU.0000345647.58219.07. (discussion 1081)

    Article  PubMed  Google Scholar 

  29. 29.

    Dohlman GF (1969) Carl Olof Nylén and the birth of the otomicroscope and microsurgery. Arch Otolaryngol 90(6):813–817. https://doi.org/10.1001/archotol.1969.00770030815025

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Donaghy RM (1979) The history of microsurgery in neurosurgery. Clin Neurosurg 26:619–625. https://doi.org/10.1093/neurosurgery/26.cn_suppl_1.619

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Buncke HJ (1995) Forty years of microsurgery: what’s next? J Hand Surg 20(3 Pt 2):S34–45. https://doi.org/10.1016/s0363-5023(95)80168-5

    CAS  Article  Google Scholar 

  32. 32.

    Stummer W, Stocker S, Wagner S et al (1998) Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery 42(3):518–525. https://doi.org/10.1097/00006123-199803000-00017. (discussion 525–526)

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ (2000) Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93(6):1003–1013. https://doi.org/10.3171/jns.2000.93.6.1003

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Neira JA, Ung TH, Sims JS et al (2017) Aggressive resection at the infiltrative margins of glioblastoma facilitated by intraoperative fluorescein guidance. J Neurosurg 127(1):111–122. https://doi.org/10.3171/2016.7.JNS16232

    Article  PubMed  Google Scholar 

  35. 35.

    Laurent D, Freedman R, Cope L et al (2019) Impact of extent of resection on incidence of postoperative complications in patients with glioblastoma. Neurosurgery. https://doi.org/10.1093/neuros/nyz313

    Article  PubMed  Google Scholar 

  36. 36.

    Abecassis IJ, Cordy B, Durfy S et al (2020) Evaluating angioarchitectural characteristics of glial and metastatic brain tumors with conventional magnetic resonance imaging. J Clin Neurosci. https://doi.org/10.1016/j.jocn.2020.04.051

    Article  PubMed  Google Scholar 

  37. 37.

    Karsy M, Yoon N, Boettcher L et al (2018) Surgical treatment of glioblastoma in the elderly: the impact of complications. J Neurooncol 138(1):123–132. https://doi.org/10.1007/s11060-018-2777-9

    Article  PubMed  Google Scholar 

  38. 38.

    Pessina F, Navarria P, Cozzi L et al (2017) Maximize surgical resection beyond contrast-enhancing boundaries in newly diagnosed glioblastoma multiforme: is it useful and safe? A single institution retrospective experience. J Neurooncol 135(1):129–139. https://doi.org/10.1007/s11060-017-2559-9

    Article  PubMed  Google Scholar 

  39. 39.

    Lakomkin N, Hadjipanayis CG (2018) Non-routine discharge disposition is associated with post-discharge complications and 30-day readmissions following craniotomy for brain tumor resection. J Neurooncol 136(3):595–604. https://doi.org/10.1007/s11060-017-2689-0

    Article  PubMed  Google Scholar 

  40. 40.

    Dasenbrock HH, Liu KX, Devine CA et al (2015) Length of hospital stay after craniotomy for tumor: a national surgical quality improvement program analysis. Neurosurg Focus 39(6):E12. https://doi.org/10.3171/2015.10.FOCUS15386

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Constantinos G. Hadjipanayis.

Ethics declarations

Conflict of interest

Constantinos Hadjipanayis is a consultant for NX Development Corp. (NXDC) and Synaptive Medical Inc. He receives royalties from NXDC.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baron, R.B., Lakomkin, N., Schupper, A.J. et al. Postoperative outcomes following glioblastoma resection using a robot-assisted digital surgical exoscope: a case series. J Neurooncol 148, 519–527 (2020). https://doi.org/10.1007/s11060-020-03543-3

Download citation

Keywords

  • Complications
  • Exoscope
  • Extent of resection
  • Progression-free survival
  • Robotics