Skip to main content

Advertisement

Log in

Guidelines in the management of CNS tumors

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Introduction

Evidence-based, clinical practice guidelines in the management of central nervous system tumors (CNS) continue to be developed and updated through the work of the Joint Section on Tumors of the Congress of Neurological Surgeons (CNS) and the American Association of Neurological Surgeons (AANS).

Methods

The guidelines are created using the most current and clinically relevant evidence using systematic methodologies, which classify available data and provide recommendations for clinical practice.

Conclusion

This update summarizes the Tumor Section Guidelines developed over the last five years for non-functioning pituitary adenomas, low grade gliomas, vestibular schwannomas, and metastatic brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Field MJ, Lohr KN (1990) Clinical practice guidelines. National Academies Press, Washington, D.C.

    Book  Google Scholar 

  2. Medicine I of (2011) Clinical practice guidelines we can trust. National Academies Press

  3. Ziu M (2019) Commentary: congress of neurological surgeons systematic review and evidence-based guidelines on treatment options for adults with multiple metastatic brain tumors. Neurosurgery 84:E187–E188. https://doi.org/10.1093/neuros/nyy598

    Article  PubMed  Google Scholar 

  4. Lugtenberg M, Burgers JS, Westert GP (2009) Effects of evidence-based clinical practice guidelines on quality of care: a systematic review. Qual Saf Health Care 18:385–392. https://doi.org/10.1136/qshc.2008.028043

    Article  CAS  PubMed  Google Scholar 

  5. Barth JH, Misra S, Aakre KM et al (2016) Why are clinical practice guidelines not followed? Clin Chem Lab Med. https://doi.org/10.1515/cclm-2015-0871

    Article  PubMed  Google Scholar 

  6. Chong BW, Kucharczyk W, Singer W, George S (1994) Pituitary gland MR: a comparative study of healthy volunteers and patients with microadenomas. Am J Neuroradiol 15:675

    CAS  PubMed  Google Scholar 

  7. Hall WA (1994) Pituitary magnetic resonance imaging in normal human volunteers: occult adenomas in the general population. Ann Intern Med 120:817. https://doi.org/10.7326/0003-4819-120-10-199405150-00001

    Article  CAS  PubMed  Google Scholar 

  8. Tomita T, Gates E (1999) Pituitary adenomas and granular cell tumors: incidence, cell type, and location of tumor in 100 pituitary glands at autopsy. Am J Clin Pathol 111:817–825. https://doi.org/10.1093/ajcp/111.6.817

    Article  CAS  PubMed  Google Scholar 

  9. Vernooij MW, Ikram MA, Tanghe HL et al (2007) Incidental findings on brain MRI in the general population. N Engl J Med 357:1821–1828. https://doi.org/10.1056/nejmoa070972

    Article  CAS  PubMed  Google Scholar 

  10. Hwang K, Kwon T, Park J et al (2019) Growth pattern and prognostic factors of untreated nonfunctioning pituitary adenomas. J Korean Neurosurg Soc 62:256–262. https://doi.org/10.3340/jkns.2018.0153

    Article  PubMed  PubMed Central  Google Scholar 

  11. Karavitaki N, Collison K, Halliday J et al (2007) What is the natural history of nonoperated nonfunctioning pituitary adenomas? Clin Endocrinol (Oxf) 67:938–943. https://doi.org/10.1111/j.1365-2265.2007.02990.x

    Article  CAS  Google Scholar 

  12. Kim JH, Dho YS, Kim YH et al (2019) Developing an optimal follow-up strategy based on the natural history of nonfunctioning pituitary adenomas. J Neurosurg. https://doi.org/10.3171/2018.4.JNS172148

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lenders N, Ikeuchi S, Russell AW et al (2015) Longitudinal evaluation of the natural history of conservatively managed nonfunctioning pituitary adenomas. Clin Endocrinol (Oxf) 84:222–228. https://doi.org/10.1111/cen.12879

    Article  CAS  Google Scholar 

  14. Sam AH, Shah S, Saleh K et al (2015) Clinical outcomes in patients with nonfunctioning pituitary adenomas managed conservatively. Clin Endocrinol (Oxf) 83:861–865. https://doi.org/10.1111/cen.12860

    Article  CAS  Google Scholar 

  15. Ntali G, Wass JA (2018) Epidemiology, clinical presentation and diagnosis of non-functioning pituitary adenomas. Pituitary 21:111–118. https://doi.org/10.1007/s11102-018-0869-3

    Article  PubMed  Google Scholar 

  16. Aghi MK, Chen CC, Fleseriu M et al (2016) Congress of neurological surgeons systematic review and evidence-based guidelines on the management of patients with nonfunctioning pituitary adenomas. Neurosurgery 79:521–523. https://doi.org/10.1227/neu.0000000000001386

    Article  PubMed  Google Scholar 

  17. Davis PC, Hoffman JC, Spencer T et al (1987) MR imaging of pituitary adenoma: CT, clinical, and surgical correlation. Am J Roentgenol 148:797–802. https://doi.org/10.2214/ajr.148.4.797

    Article  CAS  Google Scholar 

  18. Guy RL, Benn JJ, Ayers AB et al (1991) A comparison of CT and MRI in the assessment of the pituitary and parasellar region. Clin Radiol 43:156–161. https://doi.org/10.1016/s0009-9260(05)80470-2

    Article  CAS  PubMed  Google Scholar 

  19. Lundin P, Bergström K, Thuomas KÅ et al (1991) Comparison of MR imaging and CT in pituitary macroadenomas. Acta Radiol 32:189–196. https://doi.org/10.3109/02841859109177546

    Article  CAS  PubMed  Google Scholar 

  20. Miki Y, Kanagaki M, Takahashi JA et al (2007) Evaluation of pituitary macroadenomas with multidetector-row CT (MDCT): comparison with MR imaging. Neuroradiology 49:327–333. https://doi.org/10.1007/s00234-006-0194-9

    Article  PubMed  Google Scholar 

  21. Hamid O, El Fiky L, Hassan O et al (2008) Anatomic variations of the sphenoid sinus and their impact on trans-sphenoid pituitary surgery. Skull Base 18:9–15. https://doi.org/10.1055/s-2007-992764

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pinker K, Ba-Ssalamah A, Wolfsberger S et al (2005) The value of high-field MRI [3 T] in the assessment of sellar lesions. Clin Imaging 29:444. https://doi.org/10.1016/j.clinimag.2005.07.008

    Article  Google Scholar 

  23. Wolfsberger S, Ba-Ssalamah A, Pinker K et al (2004) Application of three-tesla magnetic resonance imaging for diagnosis and surgery of sellar lesions. J Neurosurg 100:278–286. https://doi.org/10.3171/jns.2004.100.2.0278

    Article  PubMed  Google Scholar 

  24. Freda PU, Beckers AM, Katznelson L et al (2011) Pituitary incidentaloma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 96:894–904. https://doi.org/10.1210/jc.2010-1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. King JT (1997) Management of incidental pituitary microadenomas: a cost-effectiveness analysis. J Clin Endocrinol Metab 82:3625–3632. https://doi.org/10.1210/jc.82.11.3625

    Article  CAS  PubMed  Google Scholar 

  26. Melmed S, Casanueva FF, Hoffman AR et al (2011) Diagnosis and treatment of hyperprolactinemia: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 96:273–288. https://doi.org/10.1210/jc.2010-1692

    Article  CAS  PubMed  Google Scholar 

  27. Pawlikowski M, Fuss-Chmielewska J, Jaranowska M et al (2015) Expression of follicle stimulating hormone receptors (FSHR) in thyroid tumours—a marker of malignancy? Thyroid Res. https://doi.org/10.1186/s13044-015-0014-6

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wade AN, Baccon J, Grady MS et al (2011) Clinically silent somatotroph adenomas are common. Eur J Endocrinol 165:39–44. https://doi.org/10.1530/eje-11-0216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Langlois F, Lim DST, Varlamov E et al (2017) Clinical profile of silent growth hormone pituitary adenomas; higher recurrence rate compared to silent gonadotroph pituitary tumors, a large single center experience. Endocrine 58:528–534. https://doi.org/10.1007/s12020-017-1447-6

    Article  CAS  PubMed  Google Scholar 

  30. Arafah BM (1986) Reversible hypopituitarism in patients with large nonfunctioning pituitary adenomas*. J Clin Endocrinol Metab 62:1173–1179. https://doi.org/10.1210/jcem-62-6-1173

    Article  CAS  PubMed  Google Scholar 

  31. Berkmann S, Fandino J, Müller B et al (2012) Pituitary surgery: experience from a large network in Central Switzerland. Swiss Med Wkly. https://doi.org/10.4414/smw.2012.13680

    Article  PubMed  Google Scholar 

  32. Webb SM, Rigla M, Wägner A et al (1999) Recovery of hypopituitarism after neurosurgical treatment of pituitary adenomas. J Clin Endocrinol Metab 84:3696–3700. https://doi.org/10.1210/jcem.84.10.6019

    Article  CAS  PubMed  Google Scholar 

  33. Drange MR, Fram NR, Herman-Bonert V, Melmed S (2000) Pituitary tumor registry: a novel clinical resource1. J Clin Endocrinol Metab 85:168–174. https://doi.org/10.1210/jcem.85.1.6309

    Article  CAS  PubMed  Google Scholar 

  34. Fatemi N, Dusick JR, Mattozo C et al (2008) Pituitary hormonal loss and recovery after transsphenoidal adenoma removal. Neurosurgery 63:709–719. https://doi.org/10.1227/01.neu.0000325725.77132.90

    Article  PubMed  Google Scholar 

  35. Harary M, DiRisio AC, Dawood HY et al (2019) Endocrine function and gland volume after endoscopic transsphenoidal surgery for nonfunctional pituitary macroadenomas. J Neurosurg 131:1142–1151. https://doi.org/10.3171/2018.5.jns181054

    Article  CAS  Google Scholar 

  36. Iglesias P, Arcano K, Triviño V et al (2017) Prevalence, clinical features, and natural history of incidental clinically non-functioning pituitary adenomas. Horm Metab Res 49:654–659. https://doi.org/10.1055/s-0043-115645

    Article  CAS  PubMed  Google Scholar 

  37. Marazuela M, Astigarraga B, Vicente A et al (1994) Recovery of visual and endocrine function following transsphenoidal surgery of large nonfunctioning pituitary adenomas. J Endocrinol Invest 17:703–707. https://doi.org/10.1007/bf03347763

    Article  CAS  PubMed  Google Scholar 

  38. McLanaham CS, Christy JH, Tindall GT (1978) Anterior pituitary function before and after trans-sphenoidal microsurgical resection of pituitary tumors. Neurosurgery. https://doi.org/10.1097/00006123-197809000-00002

    Article  PubMed  Google Scholar 

  39. Nelson AT, Tucker HSG, Becker DP (1984) Residual anterior pituitary function following transsphenoidal resection of pituitary macroadenomas. J Neurosurg 61:577–580. https://doi.org/10.3171/jns.1984.61.3.0577

    Article  PubMed  Google Scholar 

  40. Nomikos P, Ladar C, Fahlbusch R, Buchfelder M (2004) Impact of primary surgery on pituitary function in patients with non-functioning pituitary adenomas ? a study on 721 patients. Acta Neurochir (Wien) 146:27–35. https://doi.org/10.1007/s00701-003-0174-3

    Article  CAS  Google Scholar 

  41. Inder WJ, Hunt PJ (2002) Glucocorticoid replacement in pituitary surgery: guidelines for perioperative assessment and management. J Clin Endocrinol Metab 87:2745–2750. https://doi.org/10.1210/jcem.87.6.8547

    Article  CAS  PubMed  Google Scholar 

  42. Murkin JM (1982) Anesthesia and hypothyroidism. Anesth Analg. https://doi.org/10.1213/00000539-198204000-00012

    Article  PubMed  Google Scholar 

  43. Gondim JA, de Albuquerque LAF, Almeida JP et al (2017) Endoscopic endonasal surgery for treatment of pituitary apoplexy: 16 years of experience in a specialized pituitary center. World Neurosurg 108:137–142. https://doi.org/10.1016/j.wneu.2017.08.131

    Article  PubMed  Google Scholar 

  44. Yang T, Bayad F, Schaberg MR et al (2015) Endoscopic endonasal transsphenoidal treatment of pituitary apoplexy: outcomes in a series of 20 patients. Cureus. https://doi.org/10.7759/cureus.357

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zoli M, Milanese L, Faustini-Fustini M et al (2017) Endoscopic endonasal surgery for pituitary apoplexy: evidence on a 75-case series from a tertiary care center. World Neurosurg 106:331–338. https://doi.org/10.1016/j.wneu.2017.06.117

    Article  PubMed  Google Scholar 

  46. Dhasmana R, Nagpal RC, Sharma R et al (2011) Visual fields at presentation and after trans-sphenoidal resection of pituitary adenomas. J Ophthalmic Vis Res 6:187

    PubMed  PubMed Central  Google Scholar 

  47. Fujimoto N, Saeki N, Miyauchi O, Adachi-Usami E (2002) Criteria for early detection of temporal hemianopia in asymptomatic pituitary tumor. Eye 16:731–738. https://doi.org/10.1038/sj.eye.6700165

    Article  CAS  PubMed  Google Scholar 

  48. Ogra S, Nichols AD, Stylli S et al (2014) Visual acuity and pattern of visual field loss at presentation in pituitary adenoma. J Clin Neurosci 21:735–740. https://doi.org/10.1016/j.jocn.2014.01.005

    Article  PubMed  Google Scholar 

  49. Abouaf L, Vighetto A, Lebas M (2015) Neuro-ophthalmologic exploration in non-functioning pituitary adenoma. Ann Endocrinol (Paris) 76:210–219. https://doi.org/10.1016/j.ando.2015.04.006

    Article  Google Scholar 

  50. Danesh-Meyer HV, Papchenko T, Savino PJ et al (2008) In vivo retinal nerve fiber layer thickness measured by optical coherence tomography predicts visual recovery after surgery for parachiasmal tumors. Investig Opthalmol Vis Sci 49:1879. https://doi.org/10.1167/iovs.07-1127

    Article  Google Scholar 

  51. Jacob M, Raverot G, Jouanneau E et al (2009) Predicting visual outcome after treatment of pituitary adenomas with optical coherence tomography. Am J Ophthalmol 147:64–70.e2. https://doi.org/10.1016/j.ajo.2008.07.016

    Article  PubMed  Google Scholar 

  52. Moon CH, Hwang SC, Kim B-T et al (2011) Visual prognostic value of optical coherence tomography and photopic negative response in chiasmal compression. Investig Opthalmol Vis Sci 52:8527. https://doi.org/10.1167/iovs.11-8034

    Article  Google Scholar 

  53. Berkmann S, Schlaffer S, Nimsky C et al (2014) Follow-up and long-term outcome of nonfunctioning pituitary adenoma operated by transsphenoidal surgery with intraoperative high-field magnetic resonance imaging. Acta Neurochir (Wien) 156:2233–2243. https://doi.org/10.1007/s00701-014-2210-x

    Article  Google Scholar 

  54. Magro E, Graillon T, Lassave J et al (2016) Complications related to the endoscopic endonasal transsphenoidal approach for nonfunctioning pituitary macroadenomas in 300 consecutive patients. World Neurosurg 89:442–453. https://doi.org/10.1016/j.wneu.2016.02.059

    Article  PubMed  Google Scholar 

  55. Mortini P, Losa M, Barzaghi R et al (2005) Results of transsphenoidal surgery in a large series of patients with pituitary adenoma. Neurosurgery 56:1222–1233. https://doi.org/10.1227/01.neu.0000159647.64275.9d

    Article  PubMed  Google Scholar 

  56. Paluzzi A, Fernandez-Miranda JC, Tonya Stefko S et al (2013) Endoscopic endonasal approach for pituitary adenomas: a series of 555 patients. Pituitary 17:307–319. https://doi.org/10.1007/s11102-013-0502-4

    Article  Google Scholar 

  57. Petruson B, Jakobsson K-E, Elfverson J, Bengtsson B-A (1995) Five-year follow-up of nonsecreting pituitary adenomas. Arch Otolaryngol Head Neck Surg 121:317–322. https://doi.org/10.1001/archotol.1995.01890030051008

    Article  CAS  PubMed  Google Scholar 

  58. Chen L, White WL, Spetzler RF, Xu B (2010) A prospective study of nonfunctioning pituitary adenomas: presentation, management, and clinical outcome. J Neurooncol 102:129–138. https://doi.org/10.1007/s11060-010-0302-x

    Article  PubMed  Google Scholar 

  59. Comtois R, Beauregard H, Somma M et al (1991) The clinical and endocrine outcome to trans-sphenoidal microsurgery of nonsecreting pituitary adenomas. Cancer 68:860–866. https://doi.org/10.1002/1097-0142(19910815)68:4%3c860:aid-cncr2820680431%3e3.0.co;2-4

    Article  CAS  PubMed  Google Scholar 

  60. Dallapiazza RF, Grober Y, Starke RM et al (2014) Long-term results of endonasal endoscopic transsphenoidal resection of nonfunctioning pituitary macroadenomas. Neurosurgery 76:42–53. https://doi.org/10.1227/neu.0000000000000563

    Article  Google Scholar 

  61. Dekkers OM, de Keizer RJW, Roelfsema F et al (2007) Progressive improvement of impaired visual acuity during the first year after transsphenoidal surgery for non-functioning pituitary macroadenoma. Pituitary 10:61–65. https://doi.org/10.1007/s11102-007-0007-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dekkers OM, Pereira AM, Roelfsema F et al (2006) Observation alone after transsphenoidal surgery for nonfunctioning pituitary macroadenoma. J Clin Endocrinol Metab 91:1796–1801. https://doi.org/10.1210/jc.2005-2552

    Article  CAS  PubMed  Google Scholar 

  63. Fleseriu M, Yedinak C, Campbell C, Delashaw JB (2009) Significant headache improvement after transsphenoidal surgery in patients with small sellar lesions. J Neurosurg 110:354–358. https://doi.org/10.3171/2008.8.jns08805

    Article  PubMed  Google Scholar 

  64. Kim JH, Lee JH, Lee JH et al (2018) Endoscopic transsphenoidal surgery outcomes in 331 nonfunctioning pituitary adenoma cases after a single surgeon learning curve. World Neurosurg 109:e409–e416. https://doi.org/10.1016/j.wneu.2017.09.194

    Article  PubMed  Google Scholar 

  65. Kurosaki M, Lüdecke DK, Flitsch J, Saeger W (2000) Surgical treatment of clinically nonsecreting pituitary adenomas in elderly patients. Neurosurgery 47:843–849. https://doi.org/10.1097/00006123-200010000-00009

    Article  CAS  PubMed  Google Scholar 

  66. Gondim JA, Almeida JPC, Albuquerque LAF et al (2010) Endoscopic endonasal approach for pituitary adenoma: surgical complications in 301 patients. Pituitary 14:174–183. https://doi.org/10.1007/s11102-010-0280-1

    Article  Google Scholar 

  67. Halvorsen H, Ramm-Pettersen J, Josefsen R et al (2013) Surgical complications after transsphenoidal microscopic and endoscopic surgery for pituitary adenoma: a consecutive series of 506 procedures. Acta Neurochir (Wien) 156:441–449. https://doi.org/10.1007/s00701-013-1959-7

    Article  Google Scholar 

  68. Little AS, Chicoine MR, Kelly DF et al (2019) Evaluation of surgical resection goal and its relationship to extent of resection and patient outcomes in a multicenter prospective study of patients with surgically treated, nonfunctioning pituitary adenomas: a case series. Oper Neurosurg 18:26–33. https://doi.org/10.1093/ons/opz085

    Article  Google Scholar 

  69. Perry A, Graffeo CS, Meyer J et al (2019) Beyond the learning curve: comparison of microscopic and endoscopic incidences of internal carotid injury in a series of highly experienced operators. World Neurosurg 131:e128–e135. https://doi.org/10.1016/j.wneu.2019.07.074

    Article  PubMed  Google Scholar 

  70. Qureshi T, Chaus F, Fogg L et al (2016) Learning curve for the transsphenoidal endoscopic endonasal approach to pituitary tumors. Br J Neurosurg 30:637–642. https://doi.org/10.1080/02688697.2016.1199786

    Article  PubMed  Google Scholar 

  71. Snyderman CH, Fernandez-Miranda J, Gardner PA (2011) Training in neurorhinology: the impact of case volume on the learning curve. Otolaryngol Clin North Am 44:1223–1228. https://doi.org/10.1016/j.otc.2011.06.014

    Article  PubMed  Google Scholar 

  72. Mattozo CA, Dusick JR, Esposito F et al (2006) Suboptimal sphenoid and sellar exposure: a consistent finding in patients treated with repeat transsphenoidal surgery for residual endocrine-inactive macroadenomas. Neurosurgery 58:857–865. https://doi.org/10.1227/01.neu.0000209930.88242.1c

    Article  PubMed  Google Scholar 

  73. Alahmadi H, Dehdashti AR, Gentili F (2012) Endoscopic endonasal surgery in recurrent and residual pituitary adenomas after microscopic resection. World Neurosurg 77:540–547. https://doi.org/10.1016/j.wneu.2011.07.012

    Article  PubMed  Google Scholar 

  74. Charalampaki P, Reisch R, Ayad A et al (2006) Image-guided endonasal transsphenoidal microsurgical treatment of recurrent microadenomas of the pituitary gland. Min Minim Invasive Neurosurg 49:93–97. https://doi.org/10.1055/s-2006-932170

    Article  CAS  PubMed  Google Scholar 

  75. Lasio G, Ferroli P, Felisati G, Broggi G (2002) Image-guided endoscopic transnasal removal of recurrent pituitary adenomas. Neurosurgery 51:132–137. https://doi.org/10.1097/00006123-200207000-00020

    Article  PubMed  Google Scholar 

  76. Zwagerman NT, Wang EW, Shin SS et al (2019) Does lumbar drainage reduce postoperative cerebrospinal fluid leak after endoscopic endonasal skull base surgery? A prospective, randomized controlled trial. J Neurosurg 131:1172–1178. https://doi.org/10.3171/2018.4.jns172447

    Article  Google Scholar 

  77. Patel KS, Yao Y, Wang R et al (2015) Intraoperative magnetic resonance imaging assessment of non-functioning pituitary adenomas during transsphenoidal surgery. Pituitary 19:222–231. https://doi.org/10.1007/s11102-015-0679-9

    Article  Google Scholar 

  78. Soneru CP, Riley CA, Hoffman K et al (2019) Intra-operative MRI vs endoscopy in achieving gross total resection of pituitary adenomas: a systematic review. Acta Neurochir (Wien) 161:1683–1698. https://doi.org/10.1007/s00701-019-03955-9

    Article  Google Scholar 

  79. Lee C-C, Kano H, Yang H-C et al (2014) Initial Gamma Knife radiosurgery for nonfunctioning pituitary adenomas. J Neurosurg 120:647–654. https://doi.org/10.3171/2013.11.jns131757

    Article  PubMed  Google Scholar 

  80. Mingione V, Yen CP, Vance ML et al (2006) Gamma surgery in the treatment of nonsecretory pituitary macroadenoma. J Neurosurg 104:876–883. https://doi.org/10.3171/jns.2006.104.6.876

    Article  PubMed  Google Scholar 

  81. Park K-J, Kano H, Parry PV et al (2011) Long-term outcomes after gamma knife stereotactic radiosurgery for nonfunctional pituitary adenomas. Neurosurgery 69:1188–1199. https://doi.org/10.1227/neu.0b013e318222afed

    Article  PubMed  Google Scholar 

  82. Andersen M, Bjerre P, Schroder HD et al (2001) In vivo secretory potential and the effect of combination therapy with octreotide and cabergoline in patients with clinically non-functioning pituitary adenomas. Clin Endocrinol (Oxf) 54:23–30. https://doi.org/10.1046/j.1365-2265.2001.01172.x

    Article  CAS  Google Scholar 

  83. Chakera TMH, Khangure MS, Pullen P (1985) Assessment by computed tomography of the response of pituitary macroadenomas to bromocriptine. Clin Radiol 36:223–226. https://doi.org/10.1016/s0009-9260(85)80041-6

    Article  CAS  PubMed  Google Scholar 

  84. Nobels FR, de Herder WW, van den Brink WM et al (2000) Long-term treatment with the dopamine agonist quinagolide of patients with clinically non-functioning pituitary adenoma. Eur J Endocrinol. https://doi.org/10.1530/eje.0.1430615

    Article  PubMed  Google Scholar 

  85. Van Schaardenburg D, Roelfsema F, Van Seters AP, Vielvoye GJ (1989) Bromocriptine therapy for non-functioning pituitary adenoma. Clin Endocrinol (Oxf). https://doi.org/10.1111/j.1365-2265.1989.tb01418.x

    Article  Google Scholar 

  86. Verde G, Oppizzi G, Chiodini PG et al (1985) Effect of chronic bromocriptine administration on tumor size in patients with “nonsecreting” pituitary adenomas. J Endocrinol Invest 8:113–115. https://doi.org/10.1007/bf03350660

    Article  CAS  PubMed  Google Scholar 

  87. Warnet A, Harris AG, Renard E et al (1997) A prospective multicenter trial of octreotide in 24 patients with visual defects caused by nonfunctioning and gonadotropin-secreting pituitary adenomas. Neurosurgery 41:786–797. https://doi.org/10.1097/00006123-199710000-00005

    Article  CAS  PubMed  Google Scholar 

  88. Berkmann S, Schlaffer S, Buchfelder M (2013) Tumor shrinkage after transsphenoidal surgery for nonfunctioning pituitary adenoma. J Neurosurg 119:1447–1452. https://doi.org/10.3171/2013.8.jns13790

    Article  PubMed  Google Scholar 

  89. Kremer P, Forsting M, Ranaei G et al (2002) Magnetic resonance imaging after transsphenoidal surgery of clinically non-functional pituitary macroadenomas and its impact on detecting residual adenoma. Acta Neurochir (Wien) 144:433–443. https://doi.org/10.1007/s007010200064

    Article  CAS  Google Scholar 

  90. Rajaraman V, Schulder M (1999) Postoperative MRI appearance after transsphenoidal pituitary tumor resection. Surg Neurol 52:592–599. https://doi.org/10.1016/s0090-3019(99)00157-3

    Article  CAS  PubMed  Google Scholar 

  91. Soto-Ares G, Cortet-Rudelli C, Assaker R et al (2002) MRI protocol technique in the optimal therapeutic strategy of non-functioning pituitary adenomas. Eur J Endocrinol. https://doi.org/10.1530/eje.0.1460179

    Article  PubMed  Google Scholar 

  92. Colao A, Cerbone G, Cappabianca P et al (1998) Effect of surgery and radiotherapy on visual and endocrine function in nonfunctioning pituitary adenomas. J Endocrinol Invest 21:284–290. https://doi.org/10.1007/bf03350330

    Article  CAS  PubMed  Google Scholar 

  93. Coulter IC, Mukerji N, Bradey N et al (2009) Radiologic follow-up of non-functioning pituitary adenomas: rationale and cost effectiveness. J Neurooncol 93:157–163. https://doi.org/10.1007/s11060-009-9901-9

    Article  PubMed  Google Scholar 

  94. Reddy R, Cudlip S, Byrne JV et al (2011) Can we ever stop imaging in surgically treated and radiotherapy-naive patients with non-functioning pituitary adenoma? Eur J Endocrinol 165:739–744. https://doi.org/10.1530/eje-11-0566

    Article  CAS  PubMed  Google Scholar 

  95. Leary Stickney KO, Weymuller EA, Mayberg M (1994) MRI evaluation of the sphenoid sinus after transsphenoidal approach to the pituitary. Laryngoscope. https://doi.org/10.1288/00005537-199401000-00001

    Article  Google Scholar 

  96. Connor SEJ, Deasy NP (2002) MRI appearances of the sphenoid sinus at the late follow-up of trans-sphenoidal surgery for pituitary macroadenoma. Australas Radiol 46:33–40. https://doi.org/10.1046/j.1440-1673.2001.00991.x

    Article  CAS  PubMed  Google Scholar 

  97. Ferrante E, Ferraroni M, Castrignanò T et al (2006) Non-functioning pituitary adenoma database: a useful resource to improve the clinical management of pituitary tumors. Eur J Endocrinol 155:823–829. https://doi.org/10.1530/eje.1.02298

    Article  CAS  PubMed  Google Scholar 

  98. Greenman Y, Ouaknine G, Veshchev I et al (2003) Postoperative surveillance of clinically nonfunctioning pituitary macroadenomas: markers of tumour quiescence and regrowth. Clin Endocrinol (Oxf) 58:763–769. https://doi.org/10.1046/j.1365-2265.2003.01784.x

    Article  CAS  Google Scholar 

  99. Lillehei KO, Kirschman DL, Kleinschmidt-DeMasters BK, Ridgway EC (1998) Reassessment of the role of radiation therapy in the treatment of endocrine-inactive pituitary macroadenomas. Neurosurgery 43:432–438. https://doi.org/10.1097/00006123-199809000-00020

    Article  CAS  PubMed  Google Scholar 

  100. Cozzi R, Lasio G, Cardia A et al (2009) Perioperative Cortisol can predict hypothalamus-pituitary-adrenal status in clinically non-functioning pituitary adenomas. J Endocrinol Invest 32:460–464. https://doi.org/10.1007/bf03346486

    Article  CAS  PubMed  Google Scholar 

  101. Hensen J, Henig A, Fahlbusch R et al (1999) Prevalence, predictors and patterns of postoperative polyuria and hyponatraemia in the immediate course after transsphenoidal surgery for pituitary adenomas. Clin Endocrinol (Oxf) 50:431–439. https://doi.org/10.1046/j.1365-2265.1999.00666.x

    Article  CAS  Google Scholar 

  102. Pollock BE, Cochran J, Natt N et al (2008) Gamma knife radiosurgery for patients with nonfunctioning pituitary adenomas: results from a 15-year experience. Int J Radiat Oncol 70:1325–1329. https://doi.org/10.1016/j.ijrobp.2007.08.018

    Article  Google Scholar 

  103. Tominaga A, Uozumi T, Arita K et al (1995) Anterior pituitary function in patients with nonfunctioning pituitary adenoma: results of longitudinal follow-up. Endocr J 42:421–427. https://doi.org/10.1507/endocrj.42.421

    Article  CAS  PubMed  Google Scholar 

  104. Kristof RA, Rother M, Neuloh G, Klingmüller D (2009) Incidence, clinical manifestations, and course of water and electrolyte metabolism disturbances following transsphenoidal pituitary adenoma surgery: a prospective observational study. J Neurosurg 111:555–562. https://doi.org/10.3171/2008.9.jns08191

    Article  PubMed  Google Scholar 

  105. Jahangiri A, Wagner JR, Han SW et al (2016) Improved versus worsened endocrine function after transsphenoidal surgery for nonfunctional pituitary adenomas: rate, time course, and radiological analysis. J Neurosurg 124:589–595. https://doi.org/10.3171/2015.1.jns141543

    Article  CAS  PubMed  Google Scholar 

  106. Honegger J, Ernemann U, Psaras T, Will B (2006) Objective criteria for successful transsphenoidal removal of suprasellar nonfunctioning pituitary adenomas A prospective study. Acta Neurochir (Wien) 149:21–29. https://doi.org/10.1007/s00701-006-1044-6

    Article  Google Scholar 

  107. Sheehan JP, Starke RM, Mathieu D et al (2013) Gamma Knife radiosurgery for the management of nonfunctioning pituitary adenomas: a multicenter study. J Neurosurg 119:446–456. https://doi.org/10.3171/2013.3.jns12766

    Article  PubMed  Google Scholar 

  108. Batista RL, Trarbach EB, Marques MD et al (2018) Nonfunctioning pituitary adenoma recurrence and its relationship with sex, size, and hormonal immunohistochemical profile. World Neurosurg 120:e241–e246. https://doi.org/10.1016/j.wneu.2018.08.043

    Article  PubMed  Google Scholar 

  109. Cho HY, Cho SW, Kim SW et al (2010) Silent corticotroph adenomas have unique recurrence characteristics compared with other nonfunctioning pituitary adenomas. Clin Endocrinol (Oxf) 72:648–653. https://doi.org/10.1111/j.1365-2265.2009.03673.x

    Article  Google Scholar 

  110. Ioachimescu AG, Eiland L, Chhabra VS et al (2012) Silent corticotroph adenomas. Neurosurgery 71:296–304. https://doi.org/10.1227/neu.0b013e318257c1f0

    Article  PubMed  Google Scholar 

  111. Jahangiri A, Wagner JR, Pekmezci M et al (2013) A comprehensive long-term retrospective analysis of silent corticotrophic adenomas versus hormone-negative adenomas. Neurosurgery. https://doi.org/10.1227/neu.0b013e31828ebfce

    Article  PubMed  Google Scholar 

  112. Langlois F, Lim DST, Yedinak CG et al (2017) Predictors of silent corticotroph adenoma recurrence; a large retrospective single center study and systematic literature review. Pituitary 21:32–40. https://doi.org/10.1007/s11102-017-0844-4

    Article  CAS  Google Scholar 

  113. Cappabianca P, Alfieri A, Colao A et al (2000) Endoscopic endonasal transsphenoidal surgery in recurrent and residual pituitary adenomas: technical note1. Min Minim Invasive Neurosurg 43:38–43. https://doi.org/10.1055/s-2000-8814

    Article  CAS  PubMed  Google Scholar 

  114. Cavallo LM, Solari D, Tasiou A et al (2013) Endoscopic endonasal transsphenoidal removal of recurrent and regrowing pituitary adenomas: experience on a 59-patient series. World Neurosurg 80:342–350. https://doi.org/10.1016/j.wneu.2012.10.008

    Article  PubMed  Google Scholar 

  115. Chang EF, Sughrue ME, Zada G et al (2010) Long term outcome following repeat transsphenoidal surgery for recurrent endocrine-inactive pituitary adenomas. Pituitary 13:223–229. https://doi.org/10.1007/s11102-010-0221-z

    Article  PubMed  PubMed Central  Google Scholar 

  116. Rudnik A, Zawadzki T, Gałuszka-Ignasiak B et al (2006) Endoscopic transsphenoidal treatment in recurrent and residual pituitary adenomas—first experience. Min Minim Invasive Neurosurg 49:10–14. https://doi.org/10.1055/s-2006-932126

    Article  CAS  PubMed  Google Scholar 

  117. Do H, Kshettry VR, Siu A et al (2017) Extent of resection, visual, and endocrinologic outcomes for endoscopic endonasal surgery for recurrent pituitary adenomas. World Neurosurg 102:35–41. https://doi.org/10.1016/j.wneu.2017.02.131

    Article  PubMed  Google Scholar 

  118. Picozzi P, Losa M, Mortini P et al (2005) Radiosurgery and the prevention of regrowth of incompletely removed nonfunctioning pituitary adenomas. J Neurosurg 102:71–74. https://doi.org/10.3171/jns.2005.102.s_supplement.0071

    Article  PubMed  Google Scholar 

  119. Wilson PJ, De-loyde KJ, Williams JR, Smee RI (2012) A single centre’s experience of stereotactic radiosurgery and radiotherapy for non-functioning pituitary adenomas with the linear accelerator (Linac). J Clin Neurosci 19:370–374. https://doi.org/10.1016/j.jocn.2011.07.025

    Article  CAS  PubMed  Google Scholar 

  120. Iwata H, Sato K, Tatewaki K et al (2011) Hypofractionated stereotactic radiotherapy with CyberKnife for nonfunctioning pituitary adenoma: high local control with low toxicity. Neuro Oncol 13:916–922. https://doi.org/10.1093/neuonc/nor055

    Article  PubMed  PubMed Central  Google Scholar 

  121. Kopp C, Theodorou M, Poullos N et al (2012) Tumor shrinkage assessed by volumetric MRI in long-term follow-up after fractionated stereotactic radiotherapy of nonfunctioning pituitary adenoma. Int J Radiat Oncol 82:1262–1267. https://doi.org/10.1016/j.ijrobp.2011.02.053

    Article  Google Scholar 

  122. Paek SH, Downes MB, Bednarz G et al (2005) Integration of surgery with fractionated stereotactic radiotherapy for treatment of nonfunctioning pituitary macroadenomas. Int J Radiat Oncol 61:795–808. https://doi.org/10.1016/j.ijrobp.2004.07.688

    Article  Google Scholar 

  123. Pomeraniec IJ, Taylor DG, Cohen-Inbar O et al (2019) Radiation dose to neuroanatomical structures of pituitary adenomas and the effect of Gamma Knife radiosurgery on pituitary function. J Neurosurg. https://doi.org/10.3171/2019.1.jns182296

    Article  PubMed  Google Scholar 

  124. van den Bergh ACM, van den Berg G, Schoorl MA et al (2007) Immediate postoperative radiotherapy in residual nonfunctioning pituitary adenoma: beneficial effect on local control without additional negative impact on pituitary function and life expectancy. Int J Radiat Oncol 67:863–869. https://doi.org/10.1016/j.ijrobp.2006.09.049

    Article  Google Scholar 

  125. Gopalan R, Schlesinger D, Vance ML et al (2011) Long-term outcomes after gamma knife radiosurgery for patients with a nonfunctioning pituitary adenoma. Neurosurgery 69:284–293. https://doi.org/10.1227/neu.0b013e31821bc44e

    Article  PubMed  Google Scholar 

  126. Pollock BE, Carpenter PC (2003) Stereotactic radiosurgery as an alternative to fractionated radiotherapy for patients with recurrent or residual nonfunctioning pituitary adenomas. Neurosurgery 53:1086–1094. https://doi.org/10.1227/01.neu.0000088661.81189.66

    Article  PubMed  Google Scholar 

  127. Yamamoto M, Aiyama H, Koiso T et al (2018) Postsurgical salvage radiosurgery for nonfunctioning pituitary adenomas touching/compressing the optic chiasm: median 13-year postirradiation imaging follow-up results. Neurosurgery 85:476–485. https://doi.org/10.1093/neuros/nyy357

    Article  Google Scholar 

  128. Hauser BM, Lau A, Gupta S et al (2019) The epigenomics of pituitary adenoma. Front Endocrinol (Lausanne). https://doi.org/10.3389/fendo.2019.00290

    Article  Google Scholar 

  129. Brastianos PK, Shankar GM, Gill CM et al (2015) Dramatic response of BRAF V600E mutant papillary craniopharyngioma to targeted therapy. J Natl Cancer Inst 108:djv310. https://doi.org/10.1093/jnci/djv310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Brastianos P, Taylor-Weiner A, Manley P et al (2014) GE-05 * exome sequencing reveals braf mutations in papillary craniopharyngiomas. Neuro Oncol 16:v97–v97. https://doi.org/10.1093/neuonc/nou256.5

    Article  PubMed Central  Google Scholar 

  131. Jeon JW, Cho SS, Nag S et al (2018) Near-infrared optical contrast of skull base tumors during endoscopic endonasal surgery. Oper Neurosurg 17:32–42. https://doi.org/10.1093/ons/opy213

    Article  Google Scholar 

  132. Geltzeiler M, Nakassa ACI, Turner M et al (2018) Evaluation of intranasal flap perfusion by intraoperative indocyanine green fluorescence angiography. Oper Neurosurg 15:672–676. https://doi.org/10.1093/ons/opy002

    Article  Google Scholar 

  133. Olson JJ, Kalkanis SN, Ryken TC (2015) Evidence-based clinical practice parameter guidelines for the treatment of adults with diffuse low grade glioma: introduction and methods. J Neurooncol 125:449–456. https://doi.org/10.1007/s11060-015-1847-5

    Article  PubMed  Google Scholar 

  134. Fouke SJ, Benzinger T, Gibson D et al (2015) The role of imaging in the management of adults with diffuse low grade glioma. J Neurooncol 125:457–479. https://doi.org/10.1007/s11060-015-1908-9

    Article  PubMed  Google Scholar 

  135. Ragel BT, Ryken TC, Kalkanis SN et al (2015) The role of biopsy in the management of patients with presumed diffuse low grade glioma. J Neurooncol 125:481–501. https://doi.org/10.1007/s11060-015-1866-2

    Article  PubMed  Google Scholar 

  136. Aghi MK, Nahed BV, Sloan AE et al (2015) The role of surgery in the management of patients with diffuse low grade glioma. J Neurooncol 125:503–530. https://doi.org/10.1007/s11060-015-1867-1

    Article  PubMed  Google Scholar 

  137. Cahill DP, Sloan AE, Nahed BV et al (2015) The role of neuropathology in the management of patients with diffuse low grade glioma. J Neurooncol 125:531–549. https://doi.org/10.1007/s11060-015-1909-8

    Article  PubMed  Google Scholar 

  138. Ryken TC, Parney I, Buatti J et al (2015) The role of radiotherapy in the management of patients with diffuse low grade glioma. J Neurooncol 125:551–583. https://doi.org/10.1007/s11060-015-1948-1

    Article  CAS  PubMed  Google Scholar 

  139. Ziu M, Kalkanis SN, Gilbert M et al (2015) The role of initial chemotherapy for the treatment of adults with diffuse low grade glioma. J Neurooncol 125:585–607. https://doi.org/10.1007/s11060-015-1931-x

    Article  CAS  PubMed  Google Scholar 

  140. Sloan AE, Okada H, Ryken TC et al (2015) The role of emerging therapy in the management of patients with diffuse low grade glioma. J Neurooncol 125:631–635. https://doi.org/10.1007/s11060-015-1865-3

    Article  CAS  PubMed  Google Scholar 

  141. Nahed BV, Redjal N, Brat DJ et al (2015) Management of patients with recurrence of diffuse low grade glioma: a systematic review and evidence-based clinical practice guideline. J Neurooncol. https://doi.org/10.1007/s11060-015-1910-2

    Article  PubMed  Google Scholar 

  142. Ziu M, Olson JJ (2016) Update on the evidence-based clinical practice parameter guidelines for the treatment of adults with diffuse low grade glioma: the role of initial chemotherapy. J Neurooncol 128:487–489. https://doi.org/10.1007/s11060-016-2137-6

    Article  PubMed  Google Scholar 

  143. Louis DN, Holland EC, Cairncross JG (2001) Glioma classification: a molecular reappraisal. Am J Pathol. https://doi.org/10.1016/S0002-9440(10)61750-6

    Article  PubMed  PubMed Central  Google Scholar 

  144. Network CGAR, Brat DJ, Verhaak RGW et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481

    Article  Google Scholar 

  145. Brat DJ, Verhaak RGW, Aldape KD et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. https://doi.org/10.1056/NEJMoa1402121

    Article  PubMed  Google Scholar 

  146. Eckel-Passow JE, Lachance DH, Molinaro AM et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med. https://doi.org/10.1056/NEJMoa1407279

    Article  PubMed  PubMed Central  Google Scholar 

  147. Buckner JC, Shaw EG, Pugh SL et al (2016) Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. N Engl J Med. https://doi.org/10.1056/NEJMoa1500925

    Article  PubMed  PubMed Central  Google Scholar 

  148. Hadjipanayis CG, Carlson ML, Link MJ et al (2018) Congress of neurological surgeons systematic review and evidence-based guidelines on surgical resection for the treatment of patients with vestibular schwannomas. Clin Neurosurg 82:E40

    Article  Google Scholar 

  149. Dunn IF, Bi WL, Mukundan S et al (2018) Congress of neurological surgeons systematic review and evidence-based guidelines on the role of imaging in the diagnosis and management of patients with vestibular schwannomas. Clin Neurosurg 82:E32

    Article  Google Scholar 

  150. Malhotra PS, Sharma P, Fishman MA et al (2009) Clinical, radiographic, and audiometric predictors in conservative management of vestibular schwannoma. Otol Neurotol 30:507–514. https://doi.org/10.1097/mao.0b013e31819d3465

    Article  PubMed  Google Scholar 

  151. Gomez-Brouchet A, Delisle MB, Cognard C et al (2001) Vestibular schwannomas: correlations between magnetic resonance imaging and histopathologic appearance. Otol Neurotol 22:79–86. https://doi.org/10.1097/00129492-200101000-00016

    Article  CAS  PubMed  Google Scholar 

  152. Stangerup S-E, Caye-Thomasen P, Tos M, Thomsen J (2007) Change in hearing during ‘wait and scan’ management of patients with vestibular schwannoma. J Laryngol Otol 122:673–681. https://doi.org/10.1017/s0022215107001077

    Article  PubMed  Google Scholar 

  153. Pennings RJE, Morris DP, Clarke L et al (2011) Natural history of hearing deterioration in intracanalicular vestibular schwannoma. Neurosurgery 68:68–77. https://doi.org/10.1227/neu.0b013e3181fc60cb

    Article  PubMed  Google Scholar 

  154. Sweeney AD, Carlson ML, Shepard NT et al (2018) Congress of neurological surgeons systematic review and evidence-based guidelines on otologic and audiologic screening for patients with vestibular schwannomas. Clin Neurosurg 82:E29

    Article  Google Scholar 

  155. Bederson JB, von Ammon K, Wichmann WW, Yasargil MG (1991) Conservative treatment of patients with acoustic tumors. Neurosurgery. https://doi.org/10.1097/00006123-199105000-00002

    Article  PubMed  Google Scholar 

  156. Whitehouse K, Foroughi M, Shone G, Hatfield R (2009) Vestibular schwannomas—when should conservative management be reconsidered? Br J Neurosurg 24:185–190. https://doi.org/10.3109/02688690903272634

    Article  Google Scholar 

  157. Solares CA, Panizza B (2008) Vestibular schwannoma. Otol Neurotol 29:829–834. https://doi.org/10.1097/mao.0b013e318180a4c4

    Article  PubMed  Google Scholar 

  158. Ferri GG, Pirodda A, Ceroni AR et al (2012) Management of growing vestibular schwannomas. Eur Arch Oto-Rhino-Laryngol 270:2013–2019. https://doi.org/10.1007/s00405-012-2248-4

    Article  Google Scholar 

  159. Meyer TA, Canty PA, Wilkinson EP et al (2006) Small acoustic neuromas: surgical outcomes versus observation or radiation. Otol Neurotol 27:380

    Article  Google Scholar 

  160. Strauss C, Romstöck J, Fahlbusch R et al (2006) Preservation of facial nerve function after postoperative vasoactive treatment in vestibular schwannoma surgery. Neurosurgery. https://doi.org/10.1227/01.NEU.0000230260.95477.0A

    Article  PubMed  Google Scholar 

  161. Schmerber S, Palombi O, Boubagra K et al (2005) Long-term control of vestibular schwannoma after a translabyrinthine complete removal. Neurosurgery. https://doi.org/10.1093/neurosurgery/57.4.693

    Article  PubMed  Google Scholar 

  162. Kameyama S, Tanaka R, Kawaguchi T et al (1996) Long-term follow-up of the residual intracanalicular tumours after subtotal removal of acoustic neurinomas. Acta Neurochir (Wien). https://doi.org/10.1007/BF01411362

    Article  Google Scholar 

  163. Carlson ML, Van Abel KM, Driscoll CL et al (2012) Magnetic resonance imaging surveillance following vestibular schwannoma resection. Laryngoscope. https://doi.org/10.1002/lary.22411

    Article  PubMed  Google Scholar 

  164. Bennett ML, Jackson CG, Kaufmann R, Warren F (2008) Postoperative imaging of vestibular schwannomas. Otolaryngol Head Neck Surg. https://doi.org/10.1016/j.otohns.2008.01.012

    Article  PubMed  Google Scholar 

  165. Mahboubi H, Maducdoc MM, Yau AY, et al (2015) Vestibular schwannoma excision in sporadic versus neurofibromatosis type 2 populations. Otolaryngology Head and Neck Surgery (United States)

  166. Tysome JR, MacFarlane R, Durie-Gair J et al (2012) Surgical management of vestibular schwannomas and hearing rehabilitation in neurofibromatosis type 2. Otol Neurotol. https://doi.org/10.1097/MAO.0b013e318248eaaa

    Article  PubMed  Google Scholar 

  167. Germano IM, Sheehan J, Parish J et al (2018) Congress of neurological surgeons systematic review and evidence-based guidelines on the role of radiosurgery and radiation therapy in the management of patients with vestibular schwannomas. Clin Neurosurg 82:E49

    Article  Google Scholar 

  168. Lobato-Polo J, Kondziolka D, Zorro O et al (2009) Gamma knife radiosurgery in younger patients with vestibular schwannomas. Neurosurgery 65:294–301. https://doi.org/10.1227/01.neu.0000345944.14065.35

    Article  PubMed  Google Scholar 

  169. Fukuoka S, Takanashi M, Hojyo A, Konishi M, Tanaka C, Nakamura H (2009) Gamma knife radiosurgery for vestibular schwannomas. Prog Neurol Surg 22:45–62

    Article  Google Scholar 

  170. Iwai Y, Yamanaka K, Kubo T, Aiba T (2008) Gamma knife radiosurgery for intracanalicular acoustic neuromas. J Clin Neurosci 15:993–997. https://doi.org/10.1016/j.jocn.2007.09.008

    Article  PubMed  Google Scholar 

  171. Bush DA, McAllister CJ, Loredo LN et al (2002) Fractionated proton beam radiotherapy for acoustic neuroma. Neurosurgery 50:270–275. https://doi.org/10.1227/00006123-200202000-00007

    Article  PubMed  Google Scholar 

  172. Varughese JK, Wentzel-Larsen T, Pedersen P-H et al (2012) Gamma knife treatment of growing vestibular schwannoma in norway: a prospective study. Int J Radiat Oncol 84:e161–e166. https://doi.org/10.1016/j.ijrobp.2012.03.047

    Article  Google Scholar 

  173. Andrews DW, Werner-Wasik M, Den RB et al (2009) Toward dose optimization for fractionated stereotactic radiotherapy for acoustic neuromas: comparison of two dose cohorts. Int J Radiat Oncol 74:419–426. https://doi.org/10.1016/j.ijrobp.2008.08.028

    Article  Google Scholar 

  174. Hasegawa T, Kida Y, Kato T et al (2013) Long-term safety and efficacy of stereotactic radiosurgery for vestibular schwannomas: evaluation of 440 patients more than 10 years after treatment with Gamma Knife surgery. J Neurosurg 118:557–565. https://doi.org/10.3171/2012.10.jns12523

    Article  PubMed  Google Scholar 

  175. Nagano O, Serizawa T, Higuchi Y et al (2010) Tumor shrinkage of vestibular schwannomas after gamma knife surgery: results after more than 5 years of follow-up. J Neurosurg 113:122–127. https://doi.org/10.3171/2010.8.gks10960

    Article  PubMed  Google Scholar 

  176. Pollock BE, Link MJ, Stafford SL et al (2017) The risk of radiation-induced tumors or malignant transformation after single-fraction intracranial radiosurgery: results based on a 25-year experience. Int J Radiat Oncol Biol Phys. https://doi.org/10.1016/j.ijrobp.2017.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  177. Sughrue ME, Fung KM, Van Gompel JJ et al (2018) Congress of neurological surgeons systematic review and evidence-based guidelines on pathological methods and prognostic factors in vestibular schwannomas. Clin Neurosurg 82:E47

    Article  Google Scholar 

  178. Van Gompel JJ, Agazzi S, Carlson ML et al (2018) Congress of neurological surgeons systematic review and evidence-based guidelines on emerging therapies for the treatment of patients with vestibular schwannomas. Clin Neurosurg 82:E52

    Article  Google Scholar 

  179. Ammoun S, Cunliffe CH, Allen JC et al (2010) ErbB/HER receptor activation and preclinical efficacy of lapatinib in vestibular schwannoma. Neuro Oncol. https://doi.org/10.1093/neuonc/noq012

    Article  PubMed  PubMed Central  Google Scholar 

  180. Karajannis MA, Legault G, Hagiwara M, Ballas MS et al (2012) Phase II trial of lapatinib in adult and pediatric patients with neurofibromatosis type 2 and progressive vestibular schwannomas. Neuro Oncol 14:1163

    Article  CAS  Google Scholar 

  181. Olson JJ, Kalkanis SN, Ryken TC (2019) Congress of neurological surgeons systematic review and evidence-based guidelines for the treatment of adults with metastatic brain tumors: executive summary. Neurosurgery 84:550–552. https://doi.org/10.1093/neuros/nyy540

    Article  PubMed  Google Scholar 

  182. Nahed BV, Alvarez-Breckenridge C, Brastianos PK et al (2019) Congress of neurological surgeons systematic review and evidence-based guidelines on the role of surgery in the management of adults with metastatic brain tumors. Neurosurgery 84:E152–E155. https://doi.org/10.1093/neuros/nyy542

    Article  PubMed  Google Scholar 

  183. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62:1006–1012. https://doi.org/10.1016/j.jclinepi.2009.06.005

    Article  PubMed  Google Scholar 

  184. Gaspar LE, Prabhu RS, Hdeib A et al (2019) Congress of neurological surgeons systematic review and evidence-based guidelines on the role of whole brain radiation therapy in adults with newly diagnosed metastatic brain tumors. Neurosurgery 84:E159–E162. https://doi.org/10.1093/neuros/nyy541

    Article  PubMed  Google Scholar 

  185. Graber JJ, Cobbs CS, Olson JJ (2019) Congress of neurological surgeons systematic review and evidence-based guidelines on the use of stereotactic radiosurgery in the treatment of adults with metastatic brain tumors. Neurosurgery 84:E168–E170. https://doi.org/10.1093/neuros/nyy543

    Article  PubMed  Google Scholar 

  186. Sherman JH, Lo SS, Harrod T et al (2019) Congress of neurological surgeons systematic review and evidence-based guidelines on the role of chemotherapy in the management of adults with newly diagnosed metastatic brain tumors. Neurosurgery 84:E175–E177. https://doi.org/10.1093/neuros/nyy544

    Article  PubMed  Google Scholar 

  187. Ammirati M, Nahed BV, Andrews D et al (2019) Congress of neurological surgeons systematic review and evidence-based guidelines on treatment options for adults with multiple metastatic brain tumors. Neurosurgery 84:E180–E182. https://doi.org/10.1093/neuros/nyy548

    Article  PubMed  Google Scholar 

  188. Ryken TC, Kuo JS, Prabhu RS et al (2019) Congress of neurological surgeons systematic review and evidence-based guidelines on the role of steroids in the treatment of adults with metastatic brain tumors. Neurosurgery 84:E189–E191. https://doi.org/10.1093/neuros/nyy546

    Article  PubMed  Google Scholar 

  189. Chen CC, Rennert RC, Olson JJ (2019) Congress of neurological surgeons systematic review and evidence-based guidelines on the role of prophylactic anticonvulsants in the treatment of adults with metastatic brain tumors. Neurosurgery 84:E195–E197. https://doi.org/10.1093/neuros/nyy545

    Article  PubMed  Google Scholar 

  190. Elder JB, Nahed BV, Linskey ME, Olson JJ (2019) Congress of neurological surgeons systematic review and evidence-based guidelines on the role of emerging and investigational therapties for the treatment of adults with metastatic brain tumors. Neurosurgery 84:E201–E203. https://doi.org/10.1093/neuros/nyy547

    Article  PubMed  Google Scholar 

  191. Kalkanis SN, Linskey ME (2009) Evidence-based clinical practice parameter guidelines for the treatment of patients with metastatic brain tumors: introduction. J Neurooncol 96:7–10. https://doi.org/10.1007/s11060-009-0065-4

    Article  PubMed  PubMed Central  Google Scholar 

  192. Pfannenstiel LW, McNeilly C, Xiang C et al (2019) Combination PD-1 blockade and irradiation of brain metastasis induces an effective abscopal effect in melanoma. Oncoimmunology. https://doi.org/10.1080/2162402X.2018.1507669

    Article  PubMed  Google Scholar 

  193. Spallone G, Garofalo V, Picchi E et al (2018) Prolonged survival of a patient with brain melanoma metastasis treated with BRAF and MEK inhibitors combination therapy. G Ital Dermatol Venereol. https://doi.org/10.23736/S0392-0488.18.05990-4

    Article  PubMed  Google Scholar 

  194. Zhang G, Cheng R, Wang H et al (2020) Comparable outcomes of nivolumab in patients with advanced NSCLC presenting with or without brain metastases: a retrospective cohort study. Cancer Immunol Immunother. https://doi.org/10.1007/s00262-019-02462-1

    Article  PubMed  PubMed Central  Google Scholar 

  195. Hong CS, Deng D, Vera A, Chiang VL (2019) Laser-interstitial thermal therapy compared to craniotomy for treatment of radiation necrosis or recurrent tumor in brain metastases failing radiosurgery. J Neurooncol. https://doi.org/10.1007/s11060-019-03097-z

    Article  PubMed  Google Scholar 

  196. Ryken TC, McDermott M, Robinson PD et al (2010) The role of steroids in the management of brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol 96:103–114. https://doi.org/10.1007/s11060-009-0057-4

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid Redjal.

Ethics declarations

Conflict of interest

In each original guidelines document, all panel members provided full disclosure of conflicts of interest, if any, prior to establishing the recommendations contained within these guidelines. See original guidelines papers for details.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redjal, N., Venteicher, A.S., Dang, D. et al. Guidelines in the management of CNS tumors. J Neurooncol 151, 345–359 (2021). https://doi.org/10.1007/s11060-020-03530-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03530-8

Keywords

Navigation