Skip to main content
Log in

Effects of supra-total resection in neurocognitive and oncological outcome of high-grade gliomas comparing asleep and awake surgery

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Awake surgery is an established technique for resection of low-grade gliomas, while its possible benefit for resection of high-grade gliomas (HGGs) needs further confirmations. This retrospective study aims to compare overall survival, extent of resection (EOR) and cognitive outcome in two groups of HGGs patients submitted to asleep or awake surgery.

Methods

Thirty-three patients submitted to Gross Total Resection of contrast-enhancing area of HGGs were divided in two homogeneous groups: awake (AWg; N = 16) and asleep surgery (ASg; N = 17). All patients underwent to an extensive neuropsychological assessment before surgery (time_1), 1-week (time_2) and 4-months (time_3) after surgery. We performed analyses to assess differences in cognitive performances between groups, cognitive outcomes in each group and EOR. A comparison of overall survival (OS) between the two groups was conducted.

Results

Statistical analyses showed no differences between groups at time_2 and time_3 in each cognitive domain, excluding selective attention that resulted higher in the AWg before surgery. Regarding cognitive outcomes, we found a reversible worsening of memory and constructional praxis, and a significant recovery at time_3, similar for both groups. Assessment of time_3 in respect to time_1 never showed differences (all ps > .074). Moreover we found a significant lower level of tumor infiltration after surgery for AWg (p < .05), with an influence on OS (p < .05). Indeed, patients of AWg showed a significant longer OS in comparison to those in the ASg (p < .01). This result was confirmed even considering only wildtype Glioblastoma (p < .05).

Conclusion

These results indicate that awake surgery, and in general a supra-total resection of enhancing area, can improve OS in HGGs patients, preserving neuro-cognitive profile and quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request

References

  1. Stupp R, Brada M, van den Bent MJ et al (2014) High-grade glioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 25:iii93–iii101. https://doi.org/10.1093/annonc/mdu050

    Article  PubMed  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. https://doi.org/10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  3. Buckner JC (2003) Factors influencing survival in high-grade gliomas. Semin Oncol 30:10–14. https://doi.org/10.1053/J.SEMINONCOL.2003.11.031

    Article  PubMed  Google Scholar 

  4. Smith JS, Chang EF, Lamborn KR et al (2008) Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol 26:1338–1345. https://doi.org/10.1200/JCO.2007.13.9337

    Article  PubMed  Google Scholar 

  5. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  6. Hervey-Jumper SL, Berger MS (2014) Role of surgical resection in low- and high-grade gliomas. Curr Treat Options Neurol 16:284. https://doi.org/10.1007/s11940-014-0284-7

    Article  PubMed  Google Scholar 

  7. Dallabona M, Sarubbo S, Merler S et al (2017) Impact of mass effect, tumor location, age, and surgery on the cognitive outcome of patients with high-grade gliomas: a longitudinal study. Neuro-Oncology Pract. https://doi.org/10.1093/nop/npw030

    Article  Google Scholar 

  8. De Witt Hamer PC, Robles SG, Zwinderman AH et al (2012) Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol 30:2559–2565. https://doi.org/10.1200/JCO.2011.38.4818

    Article  PubMed  Google Scholar 

  9. Duffau H, Lopes M, Arthuis F et al (2005) Contribution of intraoperative electrical stimulations in surgery of low grade gliomas: a comparative study between two series without (1985–96) and with (1996–2003) functional mapping in the same institution. J Neurol Neurosurg Psychiatry 76:845–851. https://doi.org/10.1136/jnnp.2004.048520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sanai N, Berger MS (2008) Glioma extent of resection and its impact on patient outcome. Neurosurgery 62:753–764

    Article  PubMed  Google Scholar 

  11. Capelle L, Fontaine D, Mandonnet E et al (2013) Spontaneous and therapeutic prognostic factors in adult hemispheric World Health Organization Grade II gliomas: a series of 1097 cases. J Neurosurg. https://doi.org/10.3171/2013.1.JNS121

    Article  PubMed  Google Scholar 

  12. Kotrotsou A, Elakkad A, Sun J et al (2018) Multi-center study finds postoperative residual non-enhancing component of glioblastoma as a new determinant of patient outcome. J Neurooncol. https://doi.org/10.1007/s11060-018-2850-4

    Article  PubMed  Google Scholar 

  13. Papagno C, Casarotti A, Comi A et al (2012) Measuring clinical outcomes in neuro-oncology. A battery to evaluate low-grade gliomas (LGG). J Neurooncol 108:269–275. https://doi.org/10.1007/s11060-012-0824-5

    Article  PubMed  Google Scholar 

  14. Taphoorn MJ, Klein M (2004) Cognitive deficits in adult patients with brain tumours. Lancet Neurol 3:159–168. https://doi.org/10.1016/S1474-4422(04)00680-5

    Article  PubMed  Google Scholar 

  15. Duffau H (2012) Awake surgery for incidental WHO grade II gliomas involving eloquent areas. Acta Neurochir (Wien) 154:575–584. https://doi.org/10.1007/s00701-011-1216-x

    Article  Google Scholar 

  16. Klein M, Duffau H, De Witt Hamer PC (2012) Cognition and resective surgery for diffuse infiltrative glioma: An overview. J Neurooncol 108:309–318. https://doi.org/10.1007/s11060-012-0811-x

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mandonnet E, De Witt HP, Poisson I et al (2015) Initial experience using awake surgery for glioma: oncological, functional, and employment outcomes in a consecutive series of 25 cases. Neurosurgery 76:382–389. https://doi.org/10.1227/NEU.0000000000000644

    Article  PubMed  Google Scholar 

  18. Mandonnet E, Sarubbo S, Duffau H (2017) Proposal of an optimized strategy for intraoperative testing of speech and language during awake mapping. Neurosurg Rev 40:29–35. https://doi.org/10.1007/s10143-016-0723-x

    Article  PubMed  Google Scholar 

  19. Sarubbo S, Latini F, Panajia A et al (2011) Awake surgery in low-grade gliomas harboring eloquent areas: 3-year mean follow-up. Neurol Sci. https://doi.org/10.1007/s10072-011-0587-3

    Article  PubMed  Google Scholar 

  20. Sarubbo S, Latini F, Sette E et al (2012) Is the resection of gliomas in Wernicke’s area reliable? Acta Neurochir (Wien) 154:1653–1662. https://doi.org/10.1007/s00701-012-1416-z

    Article  Google Scholar 

  21. Gerritsen JKW, Viëtor CL, Rizopoulos D et al (2019) Awake craniotomy versus craniotomy under general anesthesia without surgery adjuncts for supratentorial glioblastoma in eloquent areas: a retrospective matched case-control study. Acta Neurochir (Wien) 161:307–315. https://doi.org/10.1007/s00701-018-03788-y

    Article  Google Scholar 

  22. Molinaro AM, Hervey-Jumper S, Morshed RA et al (2020) Association of maximal extent of resection of contrast-enhanced and non–contrast-enhanced tumor with survival within molecular subgroups of patients with newly diagnosed glioblastoma. JAMA Oncol 6(4):495–503. https://doi.org/10.1001/jamaoncol.2019.6143

    Article  PubMed  PubMed Central  Google Scholar 

  23. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  24. Nossek E, Matot I, Shahar T et al (2013) Failed awake craniotomy: a retrospective analysis in 424 patients undergoing craniotomy for brain tumor; Clinical article. J Neurosurg 118:243–249

    Article  PubMed  Google Scholar 

  25. Santini B, Talacchi A, Casagrande F et al (2012) Eligibility criteria and psychological profiles in patient candidates for awake craniotomy: a pilot study. J Neurosurg Anesthesiol 24:209–216

    Article  PubMed  Google Scholar 

  26. Brown T, Shah AH, Bregy A et al (2013) Awake craniotomy for brain tumor resection: the rule rather than the exception? J Neurosurg Anesthesiol 25:240–247

    Article  PubMed  Google Scholar 

  27. Von Elm E, Altman DG, Egger M et al (2007) The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Intern Med 147:573–577

    Article  Google Scholar 

  28. Laiacona M, Barbarotto R, Trivelli C, Capitani E (1993) Dissociazioni semantiche intercategoriali: descrizione di una batteria standardizzata e dati normativi. Arch Psicol Neurol Psichiatr

  29. Novelli G, Papagno C, Capitani E et al (1986) Tre test clinic di ricerca e produzione lessicale. Taratura su soggetti normali. Arch di Psicol Neurol e Psichiatr 4:477–506

    Google Scholar 

  30. Orsini A, Grossi D, Capitani E et al (1987) Verbal and spatial immediate memory span: Normative data from 1355 adults and 1112 children. Ital J Neurol Sci 8:537–548. https://doi.org/10.1007/BF02333660

    Article  Google Scholar 

  31. Carlesimo GA, Caltagirone C, Gainotti G et al (1996) The mental deterioration battery: normative data, diagnostic reliability and qualitative analyses of cognitive impairment. Eur Neurol 36:378–384. https://doi.org/10.1159/000117297

    Article  CAS  PubMed  Google Scholar 

  32. Caffarra P, Vezzadini G, Dieci F et al (2002) Rey-Osterrieth complex figure: normative values in an Italian population sample. Neurol Sci 22:443–447. https://doi.org/10.1007/s100720200003

    Article  CAS  PubMed  Google Scholar 

  33. Spinnler H, Tognoni G (1987) Taratura e standardizzazione italiana di test neuropsicologici. Ital J Neurol Sci 8:8–120

    Google Scholar 

  34. Gainotti G, Marra C, Villa G (2001) A double dissociation between accuracy and time of execution on attentional tasks in Alzheimer’s disease and multi-infarct dementia. Brain 124:731–738. https://doi.org/10.1093/brain/124.4.731

    Article  CAS  PubMed  Google Scholar 

  35. Giovagnoli AR, Del Pesce M, Mascheroni S et al (1996) Trail making test: normative values from 287 normal adult controls. Ital J Neurol Sci 17:305–309

    Article  CAS  PubMed  Google Scholar 

  36. Robinson G, Shallice T, Bozzali M, Cipolotti L (2012) The differing roles of the frontal cortex in fluency tests. Brain 135:2202–2214. https://doi.org/10.1093/brain/aws142

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sarubbo S, Tate M, De Benedictis A et al (2020) Mapping critical cortical hubs and white matter pathways by direct electrical stimulation: an original functional atlas of the human brain. Neuroimage 205:116237. https://doi.org/10.1016/j.neuroimage.2019.116237

    Article  PubMed  Google Scholar 

  38. Sarubbo S, Tate M, De Benedictis A et al (2020) A normalized dataset of 1821 cortical and subcortical functional responses collected during direct electrical stimulation in patients undergoing awake brain surgery. Data Br. https://doi.org/10.1016/j.dib.2019.104892

    Article  Google Scholar 

  39. Zacà D, Corsini F, Rozzanigo U et al (2018) Whole-brain network connectivity underlying the human speech articulation as emerged integrating direct electric stimulation, resting state fMRI and tractography. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2018.00405

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zacà D, Jovicich J, Corsini F et al (2018) ReStNeuMap: a tool for automatic extraction of resting-state functional MRI networks in neurosurgical practice. J Neurosurg JNS. https://doi.org/10.3171/2018.4.JNS18474

    Article  Google Scholar 

  41. Sarubbo S, De Benedictis A, Merler S et al (2016) Structural and functional integration between dorsal and ventral language streams as revealed by blunt dissection and direct electrical stimulation. Hum Brain Mapp 37:3858–3872. https://doi.org/10.1002/hbm.23281

    Article  PubMed  PubMed Central  Google Scholar 

  42. Coello AF, Moritz-Gasser S, Martino J et al (2013) Selection of intraoperative tasks for awake mapping based on relationships between tumor location and functional networks. J Neurosurg. https://doi.org/10.3171/2013.6.JNS122470

    Article  Google Scholar 

  43. Sarubbo S, De Benedictis A, Merler S et al (2015) Towards a functional atlas of human white matter. Hum Brain Mapp 36:3117–3136

    Article  PubMed  PubMed Central  Google Scholar 

  44. Duffau H, Capelle L, Denvil D et al (2003) Functional recovery after surgical resection of low grade gliomas in eloquent brain: hypothesis of brain compensation. J Neurol Neurosurg Psychiatry 74:901–907. https://doi.org/10.1136/JNNP.74.7.901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sarubbo S, De Benedictis A, Milani P et al (2015) The course and the anatomo-functional relationships of the optic radiation: A combined study with “post mortem” dissections and “in vivo” direct electrical mapping. J Anat. https://doi.org/10.1111/joa.12254

    Article  PubMed  Google Scholar 

  46. Herbet G, Lafargue G, Bonnetblanc F et al (2014) Inferring a dual-stream model of mentalizing from associative white matter fibres disconnection. Brain. https://doi.org/10.1093/brain/awt370

    Article  PubMed  PubMed Central  Google Scholar 

  47. Steyerberg EW, Eijkemans MJC, Harrell FE, Habbema JDF (2000) Prognostic modelling with logistic regression analysis: a comparison of selection and estimation methods in small data sets. Stat Med 19:1059–1079

    Article  CAS  PubMed  Google Scholar 

  48. Austin PC, Steyerberg EW (2015) The number of subjects per variable required in linear regression analyses. J Clin Epidemiol 68:627–636

    Article  PubMed  Google Scholar 

  49. Riley RD, Snell KI, Ensor J et al (2019) Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. Stat Med 38:1276–1296

    Article  PubMed  Google Scholar 

  50. Schupper AJ, Hirshman BR, Carroll KT et al (2017) Effect of gross total resection in world health organization grade II Astrocytomas: SEER-based survival analysis. World Neurosurg 103:741–747. https://doi.org/10.1016/J.WNEU.2017.03.140

    Article  PubMed  Google Scholar 

  51. Mitchell AJ, Kemp S, Benito-León J, Reuber M (2010) The influence of cognitive impairment on health-related quality of life in neurological disease. Acta Neuropsychiatr 22:2–13. https://doi.org/10.1111/j.1601-5215.2009.00439.x

    Article  Google Scholar 

  52. Douw L, Klein M, Fagel SS et al (2009) Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: long-term follow-up. Lancet Neurol 8:810–818. https://doi.org/10.1016/S1474-4422(09)70204-2

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would express their gratitude to the entire nurses teams of the Division of Neurosurgery and Anesthesiology for the daily interest, diligence and support, and the Direction Team of the APSS for their support to the work of the Division of Neurosurgery in the neuro-oncology field.

Funding

The extensive neuropsychological analyses of the NePsi Project (Division of Neurosurgery, “Santa Chiara Hospital”, Trento, Italy) included in this paper were supported by CARITRO Foundation (Trento, Italy) and the Direction Team of the Azienda Provinciale per I Servizi Sanitari of Trento.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Sarubbo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This retrospective study respects the ethical standards of the Declaration of Helsinki (BMJ 1991; 302: 1194).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Supplementary file2 (DOCX 22 kb)

Supplementary file3 (DOCX 13 kb)

Supplementary file4 (PDF 77 kb)

Supplementary file5 (PDF 75 kb)

Supplementary file6 (PDF 70 kb)

Supplementary file7 (PDF 67 kb)

11060_2020_3494_MOESM8_ESM.tif

Online Resource Figure 1: Cumulative hazard for patients with post-operative tumor infiltration index < or > 9. Supplementary file8 (TIF 370 kb)

11060_2020_3494_MOESM9_ESM.tif

Online Resource Figure 2: Kaplan-Meier curves for patients with post-operative tumor infiltration index < or > 9. Supplementary file9 (TIF 419 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zigiotto, L., Annicchiarico, L., Corsini, F. et al. Effects of supra-total resection in neurocognitive and oncological outcome of high-grade gliomas comparing asleep and awake surgery. J Neurooncol 148, 97–108 (2020). https://doi.org/10.1007/s11060-020-03494-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03494-9

Keywords

Navigation