Skip to main content

Advertisement

Log in

In silico analysis of the immunological landscape of pituitary adenomas

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Immunotherapy has gained traction in the treatment of solid tumors but the immunological landscape of pituitary adenomas is not well defined. We sought to investigate the immunological composition in pituitary adenomas using RNA deconvolution (CIBERSORTx) on an existing gene expression dataset for pituitary adenomas.

Methods

We applied an established computational approach (CIBERSORTx) on 134 pituitary adenomas from a previously published gene expression dataset to infer the proportions of 22 subsets of immune cells. We investigated associations between each immune cell type and tumor subtype.

Results

We found that the majority of infiltrating immune cells within pituitary adenomas were comprised of M2 macrophages followed by resting CD4+ memory T cells and mast cells. Silent pituitary tumors have higher M2 macrophage fractions when compared to other subtypes. In contrast, Cushing pituitary tumors, both overt and subclinical cases, had higher CD8+ T cells fractions than GH tumors, prolactinomas, hyperthyroid tumors, and silent tumors.

Conclusions

RNA deconvolution of the immune infiltrates of pituitary adenomas using CIBERSORTx suggests that most pituitary adenomas comprise of M2 macrophages, but each adenoma subtype has a unique immune landscape. This may have implications in targeting each adenoma subtype with different immunotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ostrom QT, Gittleman H, Xu J, Kromer C, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS (2016) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009–2013. Neuro Oncol 18(5):1–75. https://doi.org/10.1093/neuonc/now207

    Article  Google Scholar 

  2. Chen L, Han X (2015) Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest 125(9):3384–3391. https://doi.org/10.1172/JCI80011

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lu JQ, Adam B, Jack AS, Lam A, Broad RW, Chik CL (2015) Immune cell infiltrates in pituitary adenomas: more macrophages in larger adenomas and more T cells in growth hormone adenomas. Endocr Pathol 26(3):263–272. https://doi.org/10.1007/s12022-015-9383-6

    Article  CAS  PubMed  Google Scholar 

  4. Mei Y, Bi WL, Greenwald NF, Du Z, Agar NY, Kaiser UB, Woodmansee WW, Reardon DA, Freeman GJ, Fecci PE, Laws ER Jr, Santagata S, Dunn GP, Dunn IF (2016) Increased expression of programmed death ligand 1 (PD-L1) in human pituitary tumors. Oncotarget 7(47):76565–76576. https://doi.org/10.18632/oncotarget.12088

    Article  PubMed  PubMed Central  Google Scholar 

  5. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12(5):453–457. https://doi.org/10.1038/nmeth.3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Athar A, Fullgrabe A, George N, Iqbal H, Huerta L, Ali A, Snow C, Fonseca NA, Petryszak R, Papatheodorou I, Sarkans U, Brazma A (2019) ArrayExpress update—from bulk to single-cell expression data. Nucleic Acids Res 47(D1):D711–D715. https://doi.org/10.1093/nar/gky964

    Article  CAS  PubMed  Google Scholar 

  7. Neou M, Villa C, Armignacco R, Jouinot A, RaffinSanson ML, Septier A, Letourneur F, Diry S, Diedisheim M, Izac B, Gaspar C, Perlemoine K, Verjus V, Bernier M, Boulin A, Emile JF, Bertagna X, Jaffrezic F, Laloe D, Baussart B, Bertherat J, Gaillard S, Assie G (2020) Pangenomic classification of pituitary neuroendocrine tumors. Cancer Cell 37(1):123–134. https://doi.org/10.1016/j.ccell.2019.11.002

    Article  CAS  PubMed  Google Scholar 

  8. Marques P, Barry S, Carlsen E, Collier D, Ronaldson A, Awad S, Dorward N, Grieve J, Mendoza N, Muquit S, Grossman AB, Balkwill F, Korbonits M (2019) Chemokines modulate the tumour microenvironment in pituitary neuroendocrine tumours. Acta Neuropathol Commun 7(1):172. https://doi.org/10.1186/s40478-019-0830-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sato M, Tamura R, Tamura H, Mase T, Kosugi K, Morimoto Y, Yoshida K, Toda M (2019) Analysis of Tumor Angiogenesis and Immune Microenvironment in NonFunctional Pituitary Endocrine Tumors. J Clin Med 8(5):695. https://doi.org/10.3390/jcm8050695

    Article  CAS  PubMed Central  Google Scholar 

  10. Yagnik G, Rutowski MJ, Shah SS, Aghi MK (2019) Stratifying nonfunctional pituitary adenomas into two groups distinguished by macrophage subtypes. Oncotarget 10(22):2212–2223. https://doi.org/10.18632/oncotarget.26775

    Article  PubMed  PubMed Central  Google Scholar 

  11. Barry S, Carlsen E, Marques P, Stiles CE, Gadaleta E, Berney DM, Roncaroli F, Chelala C, Solomou A, Herincs M, Caimari F, Grossman AB, Crnogorac-Jurcevic T, Haworth O, Gaston-Massuet C, Korbonits M (2019) Tumor microenvironment defines the invasive phenotype of AIP-mutation-positive pituitary tumors. Oncogene 38(27):5381–5395. https://doi.org/10.1038/s41388-019-0779-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kemeny HR, Elsamadicy AA, Farber SH, Champion CD, Lorrey SJ, Chongsathidkiet P, Woroniecka KI, Cui X, Shen SH, Rhodin KE, Tsvankin V, Everitt J, Sanchez-Perez L, Healy P, McLendon RE, Codd PJ, Dunn IF, Fecci PE (2020) Targeting PD-L1 initiates effective antitumor immunity in a murine model of cushing disease. Clin Cancer Res 26(5):1141–1151. https://doi.org/10.1158/1078-0432.CCR-18-3486

    Article  PubMed  Google Scholar 

  13. Wang PF, Wang TJ, Yang YK, Yao K, Li Z, Li YM, Yan CX (2018) The expression profile of PD-L1 and CD8(+) lymphocyte in pituitary adenomas indicating for immunotherapy. J Neurooncol 139(1):89–95. https://doi.org/10.1007/s11060-018-2844-2

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Chen L (2016) Classification of advanced human cancers based on tumor immunity in the microenvironment (TIME) for cancer immunotherapy. JAMA Oncol 2(11):1403–1404. https://doi.org/10.1001/jamaoncol.2016.2450

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA (2018) Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol 1711:243–259. https://doi.org/10.1007/978-1-4939-7493-1_12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rohr-Udilova N, Klinglmuller F, Schulte-Hermann R, Stift J, Herac M, Salzmann M, Finotello F, Timelthaler G, Oberhuber G, Pinter M, Reiberger T, Jensen-Jarolim E, Eferl R, Trauner M (2018) Deviations of the immune cell landscape between healthy liver and hepatocellular carcinoma. Sci Rep 8(1):6220. https://doi.org/10.1038/s41598-018-24437-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang S, Liu T, Cheng Y, Bai Y, Liang G (2019) Immune cell infiltration as a biomarker for the diagnosis and prognosis of digestive system cancer. Cancer Sci 110(12):3639–3649. https://doi.org/10.1111/cas.14216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tang G, Yin W (2020) Development of an immune infiltration-related prognostic scoring system based on the genomic landscape analysis of glioblastoma multiforme. Front Oncol 10:154. https://doi.org/10.3389/fonc.2020.00154

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mony JT, Schuchert MJ (2018) Prognostic implications of heterogeneity in intra-tumoral immune composition for recurrence in early stage lung cancer. Front Immunol 9:2298. https://doi.org/10.3389/fimmu.2018.02298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacky T. Yeung.

Ethics declarations

Conflict of interest

None.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeung, J.T., Vesely, M.D. & Miyagishima, D.F. In silico analysis of the immunological landscape of pituitary adenomas. J Neurooncol 147, 595–598 (2020). https://doi.org/10.1007/s11060-020-03476-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03476-x

Keywords

Navigation