Glucocorticoids and immune checkpoint inhibitors in glioblastoma

Abstract

Purpose

Immunotherapy, activation of the immune system to target tumor cells, represents a paradigm shift in the treatment of cancer. Immune checkpoint therapies, which target immunomodulatory molecules expressed on T-lymphocytes, have demonstrated improved survival in a variety of malignancies. However, benefit in glioblastoma, the most common and devastating malignant brain tumor, remains to be seen. With several recent clinical trials failing to show efficacy of immunotherapy, concerns have been raised regarding the impact of glucocorticoid use in this patient population that may impair the ability for immune checkpoint inhibitors to affect a response.

Methods

For this article we examined the mechanism by which immune checkpoint inhibitors activate, and glucocorticoids impair, T-lymphocyte function.

Results

In this context, we review the clinical data of immune checkpoint inhibitors in glioblastoma as well as the impact glucocorticoids have on immune checkpoint inhibitor efficacy. Finally, we highlight key questions that remain in the field, and the potential benefit of further research for central nervous system tumors.

Conclusion

More information on the extent, character and duration of glucocorticoids on patients treated with PD-(L)1 will better inform both clinical management and novel therapeutic development of immunotherapy in patients with CNS malignancies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Gandhi L, Rodriguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F et al (2018) Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med 378(22):2078–2092

    CAS  Google Scholar 

  2. 2.

    Rini BI, Plimack ER, Stus V, Gafanov R, Hawkins R, Nosov D et al (2019) Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 380(12):1116–1127

    CAS  PubMed  Google Scholar 

  3. 3.

    Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373(1):23–34

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H et al (2018) Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 379(22):2108–2121

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Armand P, Engert A, Younes A, Fanale M, Santoro A, Zinzani PL et al (2018) Nivolumab for relapsed/refractory classic hodgkin lymphoma after failure of autologous hematopoietic cell transplantation: extended follow-up of the multicohort single-arm phase II CheckMate 205 Trial. J Clin Oncol 36(14):1428–1439

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Jacobs JF, Idema AJ, Bol KF, Nierkens S, Grauer OM, Wesseling P et al (2009) Regulatory T cells and the PD-L1/PD-1 pathway mediate immune suppression in malignant human brain tumors. Neuro Oncol 11(4):394–402

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Krummel MF, Allison JP (1995) CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 182(2):459–465

    CAS  PubMed  Google Scholar 

  9. 9.

    Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z et al (2008) CTLA-4 control over Foxp3 + regulatory T cell function. Science 322(5899):271–275

    CAS  PubMed  Google Scholar 

  10. 10.

    Harding FA, McArthur JG, Gross JA, Raulet DH, Allison JP (1992) CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356(6370):607–609

    CAS  PubMed  Google Scholar 

  11. 11.

    Omuro A, Vlahovic G, Lim M, Sahebjam S, Baehring J, Cloughesy T et al (2018) Nivolumab with or without ipilimumab in patients with recurrent glioblastoma: results from exploratory phase I cohorts of CheckMate 143. Neuro Oncol 20(5):674–686

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Reardon DAOA, Brandes AA et al (2017) OS10.3 randomized phase 3 study evaluating the efficacy and safety of nivolumab vs bevacizumab in patients with recurrent glioblastoma: CheckMate 143. Neuro-Oncology 1(19(3):iii21

    Google Scholar 

  13. 13.

    Bristol-Myers Squibb Provides Update on Phase 3 Opdivo (nivolumab) CheckMate—548 trial in patients with newly diagnosed MGMT-methylated glioblastoma multiforme. https://news.bms.com/press-release/corporatefinancial-news/bristol-myers-squibb-provides-update-phase-3-opdivo-nivolumab. Accessed 10 Dec 2019

  14. 14.

    Bristol-Myers Squibb Announces Phase 3 CheckMate – 498 Study Did Not Meet Primary Endpoint of Overall Survival with Opdivo (niovlumab) Plus Radiation in Patients with Newly Diagnosed MGMT-Unmethylated Glioblastoma Multifrome. https://news.bms.com/press-release/corporatefinancial-news/bristol-myers-squibb-announces-phase-3-checkmate-498-study-did. Accessed 10 Dec 2019

  15. 15.

    Cloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH, Davidson TB et al (2019) Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med 25(3):477–486

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Schalper KA, Rodriguez-Ruiz ME, Diez-Valle R, Lopez-Janeiro A, Porciuncula A, Idoate MA et al (2019) Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat Med 25(3):470–476

    CAS  PubMed  Google Scholar 

  17. 17.

    Zhao J, Chen AX, Gartrell RD, Silverman AM, Aparicio L, Chu T et al (2019) Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat Med 25(3):462–469

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Ebert PJR, Cheung J, Yang Y, McNamara E, Hong R, Moskalenko M et al (2016) MAP Kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity 44(3):609–621

    CAS  PubMed  Google Scholar 

  19. 19.

    Hapgood JP, Avenant C, Moliki JM (2016) Glucocorticoid-independent modulation of GR activity: implications for immunotherapy. Pharmacol Ther 165:93–113

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    De Bosscher K, Schmitz ML, Vanden Berghe W, Plaisance S, Fiers W, Haegeman G (1997) Glucocorticoid-mediated repression of nuclear factor-kappaB-dependent transcription involves direct interference with transactivation. Proc Natl Acad Sci USA 94(25):13504–13509

    CAS  PubMed  Google Scholar 

  21. 21.

    Brahmer JR, Lacchetti C, Schneider BJ, Atkins MB, Brassil KJ, Caterino JM et al (2018) Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 36(17):1714–1768

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Dexamethasone Tablets. https://www.accessdata.fda.gov/drugsatfda_docs/label/2004/11664slr062_decadron_lbl.pdf. Accessed 27 Oct 2019

  23. 23.

    Galicich JH, French LA, Melby JC (1961) Use of dexamethasone in treatment of cerebral edema associated with brain tumors. J Lancet 81:46–53

    CAS  PubMed  Google Scholar 

  24. 24.

    Czock D, Keller F, Rasche FM, Haussler U (2005) Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet 44(1):61–98

    CAS  PubMed  Google Scholar 

  25. 25.

    Loew D, Schuster O, Graul EH (1986) Dose-dependent pharmacokinetics of dexamethasone. Eur J Clin Pharmacol 30(2):225–230

    CAS  PubMed  Google Scholar 

  26. 26.

    Spoorenberg SM, Deneer VH, Grutters JC, Pulles AE, Voorn GP, Rijkers GT et al (2014) Pharmacokinetics of oral vs. intravenous dexamethasone in patients hospitalized with community-acquired pneumonia. Br J Clin Pharmacol 78(1):78–83

    CAS  PubMed  Google Scholar 

  27. 27.

    Weissman DE, Janjan NA, Erickson B, Wilson FJ, Greenberg M, Ritch PS et al (1991) Twice-daily tapering dexamethasone treatment during cranial radiation for newly diagnosed brain metastases. J Neurooncol 11(3):235–239

    CAS  PubMed  Google Scholar 

  28. 28.

    Pitter KL, Tamagno I, Alikhanyan K, Hosni-Ahmed A, Pattwell SS, Donnola S et al (2016) Corticosteroids compromise survival in glioblastoma. Brain 139(Pt 5):1458–1471

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Wong ET, Lok E, Gautam S, Swanson KD (2015) Dexamethasone exerts profound immunologic interference on treatment efficacy for recurrent glioblastoma. Br J Cancer 113(2):232–241

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Hughes MA, Parisi M, Grossman S, Kleinberg L (2005) Primary brain tumors treated with steroids and radiotherapy: low CD4 counts and risk of infection. Int J Radiat Oncol Biol Phys 62(5):1423–1426

    CAS  PubMed  Google Scholar 

  31. 31.

    Berghoff AS, Kiesel B, Widhalm G, Rajky O, Ricken G, Wohrer A et al (2015) Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro-Oncology 17(8):1064–1075

    CAS  PubMed  Google Scholar 

  32. 32.

    Berghoff AS, Fuchs E, Ricken G, Mlecnik B, Bindea G, Spanberger T et al (2016) Density of tumor-infiltrating lymphocytes correlates with extent of brain edema and overall survival time in patients with brain metastases. Oncoimmunology 5(1):e1057388

    PubMed  Google Scholar 

  33. 33.

    Giles AJ, Hutchinson MND, Sonnemann HM, Jung J, Fecci PE, Ratnam NM et al (2018) Dexamethasone-induced immunosuppression: mechanisms and implications for immunotherapy. J Immunother Cancer 6(1):51

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Fuca G, Galli G, Poggi M, Lo Russo G, Proto C, Imbimbo M et al (2019) Modulation of peripheral blood immune cells by early use of steroids and its association with clinical outcomes in patients with metastatic non-small cell lung cancer treated with immune checkpoint inhibitors. ESMO Open 4(1):e000457

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Cohen JJ (1972) Thymus-derived lymphocytes sequestered in the bone marrow of hydrocortisone-treated mice. J Immunol 108(3):841–844

    CAS  PubMed  Google Scholar 

  36. 36.

    Bloemena E, Weinreich S, Schellekens PT (1990) The influence of prednisolone on the recirculation of peripheral blood lymphocytes in vivo. Clin Exp Immunol 80(3):460–466

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Van Laethem F, Baus E, Smyth LA, Andris F, Bex F, Urbain J et al (2001) Glucocorticoids attenuate T cell receptor signaling. J Exp Med 193(7):803–814

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Lowenberg M, Tuynman J, Bilderbeek J, Gaber T, Buttgereit F, van Deventer S et al (2005) Rapid immunosuppressive effects of glucocorticoids mediated through Lck and Fyn. Blood 106(5):1703–1710

    PubMed  Google Scholar 

  39. 39.

    Marchetti MC, Di Marco B, Cifone G, Migliorati G, Riccardi C (2003) Dexamethasone-induced apoptosis of thymocytes: role of glucocorticoid receptor-associated Src kinase and caspase-8 activation. Blood 101(2):585–593

    CAS  PubMed  Google Scholar 

  40. 40.

    Northrop JP, Crabtree GR, Mattila PS (1992) Negative regulation of interleukin 2 transcription by the glucocorticoid receptor. J Exp Med 175(5):1235–1245

    CAS  PubMed  Google Scholar 

  41. 41.

    Paliogianni F, Raptis A, Ahuja SS, Najjar SM, Boumpas DT (1993) Negative transcriptional regulation of human interleukin 2 (IL-2) gene by glucocorticoids through interference with nuclear transcription factors AP-1 and NF-AT. J Clin Invest 91(4):1481–1489

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Nijhuis EW, Hinloopen B, van Lier RA, Nagelkerken L (1995) Differential sensitivity of human naive and memory CD4 + T cells for dexamethasone. Int Immunol 7(4):591–595

    CAS  PubMed  Google Scholar 

  43. 43.

    Lanza L, Scudeletti M, Puppo F, Bosco O, Peirano L, Filaci G et al (1996) Prednisone increases apoptosis in in vitro activated human peripheral blood T lymphocytes. Clin Exp Immunol 103(3):482–490

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Olnes MJ, Kotliarov Y, Biancotto A, Cheung F, Chen J, Shi R et al (2016) Effects of systemically administered hydrocortisone on the human immunome. Sci Rep 6:23002

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Xia M, Gasser J, Feige U (1999) Dexamethasone enhances CTLA-4 expression during T cell activation. Cell Mol Life Sci 55(12):1649–1656

    CAS  PubMed  Google Scholar 

  46. 46.

    Xing K, Gu B, Zhang P, Wu X (2015) Dexamethasone enhances programmed cell death 1 (PD-1) expression during T cell activation: an insight into the optimum application of glucocorticoids in anti-cancer therapy. BMC Immunol 16:39

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Harmankaya K, Erasim C, Koelblinger C, Ibrahim R, Hoos A, Pehamberger H et al (2011) Continuous systemic corticosteroids do not affect the ongoing regression of metastatic melanoma for more than two years following ipilimumab therapy. Med Oncol 28(4):1140–1144

    CAS  PubMed  Google Scholar 

  48. 48.

    Horvat TZ, Adel NG, Dang TO, Momtaz P, Postow MA, Callahan MK et al (2015) Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with Ipilimumab at Memorial Sloan Kettering Cancer Center. J Clin Oncol 33(28):3193–3198

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Attia P, Phan GQ, Maker AV, Robinson MR, Quezado MM, Yang JC et al (2005) Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J Clin Oncol 23(25):6043–6053

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Downey SG, Klapper JA, Smith FO, Yang JC, Sherry RM, Royal RE et al (2007) Prognostic factors related to clinical response in patients with metastatic melanoma treated by CTL-associated antigen-4 blockade. Clin Cancer Res 13(22 Pt 1):6681–6688

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Garant A, Guilbault C, Ekmekjian T, Greenwald Z, Murgoi P, Vuong T (2017) Concomitant use of corticosteroids and immune checkpoint inhibitors in patients with hematologic or solid neoplasms: a systematic review. Crit Rev Oncol Hematol 120:86–92

    CAS  PubMed  Google Scholar 

  52. 52.

    Parakh S, Park JJ, Mendis S, Rai R, Xu W, Lo S et al (2017) Efficacy of anti-PD-1 therapy in patients with melanoma brain metastases. Br J Cancer 116(12):1558–1563

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Queirolo P, Spagnolo F, Ascierto PA, Simeone E, Marchetti P, Scoppola A et al (2014) Efficacy and safety of ipilimumab in patients with advanced melanoma and brain metastases. J Neurooncol 118(1):109–116

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Margolin K, Ernstoff MS, Hamid O, Lawrence D, McDermott D, Puzanov I et al (2012) Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol 13(5):459–465

    CAS  PubMed  Google Scholar 

  55. 55.

    Arbour KC, Mezquita L, Long N, Rizvi H, Auclin E, Ni A et al (2018) Impact of baseline steroids on efficacy of programmed cell death-1 and programmed death-ligand 1 blockade in patients with non-small-cell lung cancer. J Clin Oncol 36(28):2872–2878

    CAS  PubMed  Google Scholar 

  56. 56.

    Della Corte CM, Morgillo F (2019) Early use of steroids affects immune cells and impairs immunotherapy efficacy. ESMO Open 4(1):e000477

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Banna GL, Passiglia F, Colonese F, Canova S, Menis J, Addeo A et al (2018) Immune-checkpoint inhibitors in non-small cell lung cancer: a tool to improve patients’ selection. Crit Rev Oncol Hematol 129:27–39

    PubMed  Google Scholar 

Download references

Funding

No financial support was provided for this review.

Author information

Affiliations

Authors

Contributions

WJK performed the literature search and drafted the initial manuscript. MRG provided concept and study interpretation. All authors contributed to manuscript editing and have approved the submitted version.

Corresponding author

Correspondence to Mark R. Gilbert.

Ethics declarations

Conflict of interest

WJK and MRG declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kelly, W.J., Gilbert, M.R. Glucocorticoids and immune checkpoint inhibitors in glioblastoma. J Neurooncol 151, 13–20 (2021). https://doi.org/10.1007/s11060-020-03439-2

Download citation

Keywords

  • Glucocorticoids
  • Steroids
  • Immune
  • Checkpoint
  • CNS
  • Glioblastoma