Skip to main content

The evolution of stereotactic radiosurgery in neurosurgical practice

Abstract

Introduction

Stereotactic radiosurgery (SRS) was born in an attempt to treat complex intracranial pathologies in a fashion whereby open surgery would create unnecessary or excessive risk. To create this innovation, it was necessary to harness advances in other fields such as engineering, physics, radiology, and computer science.

Methods

We review the history of SRS to provide context to today’s current state, as well as guide future advancement in the field.

Results

Since time of Lars Leksell, the young Swedish neurosurgeon who pioneered the development of the SRS, the collegial and essential partnership between neurosurgeons, radiation oncologists and physicists has given rise to radiosurgery as a prominent and successful tool in neurosurgical practice.

Conclusion

We examine how neurosurgeons have helped foster the SRS evolution and how this evolution has impacted neurosurgical practice as well as that of radiation oncology and neuro-oncology.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Clarke RH, Horsley V (2007) THE CLASSIC: On a method of investigating the deep ganglia and tracts of the central nervous system (cerebellum). Clin Orthop Relat Res. 463:3–6

    CAS  PubMed  Article  Google Scholar 

  2. Scatliff JH, Morris PJ (2014) From Roentgen to magnetic resonance imaging: the history of medical imaging. N C Med J 75(2):111–113

    PubMed  Google Scholar 

  3. Leksell L, Jernberg B (1980) Stereotaxis and tomography. A technical note. Acta Neurochir (Wien) 52(1–2):1–7

    CAS  Article  Google Scholar 

  4. Leksell L, Leksell D, Schwebel J (1985) Stereotaxis and nuclear magnetic resonance. J Neurol Neurosurg Psychiatry 48(1):14–18

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Barnett GH, Linskey ME, Adler JR et al (2007) Stereotactic radiosurgery—an organized neurosurgery-sanctioned definition. J Neurosurg 106(1):1–5

    PubMed  Article  Google Scholar 

  6. Seung SK, Larson DA, Galvin JM et al (2013) American College of Radiology (ACR) and American Society for Radiation Oncology (ASTRO) Practice Guideline for the Performance of Stereotactic Radiosurgery (SRS). Am J Clin Oncol 36(3):310–315

    PubMed  PubMed Central  Article  Google Scholar 

  7. Leksell L (1951) The stereotaxic method and radiosurgery of the brain. Acta Chirurgica Scandinavica 102(4):316–319

    CAS  PubMed  Google Scholar 

  8. Mitrasinovic S, Zhang M, Appelboom G et al (2019) Milestones in stereotactic radiosurgery for the central nervous system. J Clin Neurosci 59:12–19

    PubMed  Article  Google Scholar 

  9. Picard C, Olivier A, Bertrand G (1983) The first human stereotaxic apparatus The contribution of Aubrey Mussen to the field of stereotaxis. J Neurosurg. 59(4):673–676

    CAS  PubMed  Article  Google Scholar 

  10. Grunert P (2013) From the idea to its realization: the evolution of minimally invasive techniques in neurosurgery. Minim Invasive Surg 2013:171369

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Spiegel EA, Wycis HT, Marks M, Lee AJ (1947) Stereotaxic apparatus for operations on the human brain. Science 106(2754):349–350

    CAS  PubMed  Article  Google Scholar 

  12. Spiegel EA, Wycis HT, Thur C (1951) The stereoencephalotome (model III of our stereotaxic apparatus for operations on the human brain). J Neurosurg 8(4):452–453

    CAS  PubMed  Article  Google Scholar 

  13. Ljunggren B (1993) Herbert Olivecrona: founder of Swedish neurosurgery. J Neurosurg 78(1):142–149

    CAS  PubMed  Article  Google Scholar 

  14. Leksell L (1950) A stereotaxic apparatus for intracerebral surgery. Acta Chirurgica Scandinavica 99(3):229–233

    Google Scholar 

  15. Leksell L (1971) Stereotaxis and radiosurgery: an operative system. Thomas, Springfield

    Google Scholar 

  16. Larsson B, Leksell L, Rexed B, Sourander P, Mair W, Andersson B (1958) The high-energy proton beam as a neurosurgical tool. Nature 182(4644):1222–1223

    CAS  PubMed  Article  Google Scholar 

  17. Sheehan JP, Yen CP, Lee CC, Loeffler JS (2014) Cranial stereotactic radiosurgery: current status of the initial paradigm shifter. J Clin Oncol 32(26):2836–2846

    PubMed  PubMed Central  Article  Google Scholar 

  18. Owen H, Holder D, Alonso J, Mackay R (2014) Technologies for delivery of proton and ion beams for radiotherapy. Int J Mod Phys A 29(14):1441002

    Article  CAS  Google Scholar 

  19. Wilson RR (1946) Radiological use of fast protons. Radiology 47(5):487–491

    CAS  PubMed  Article  Google Scholar 

  20. Lawrence JH, Tobias CA, Born JL et al (1958) Pituitary irradiation with high-energy proton beams: a preliminary report. Can Res 18(2):121–134

    CAS  Google Scholar 

  21. Kjellberg RN, Hanamura T, Davis KR, Lyons SL, Adams RD (1983) Bragg-peak proton-beam therapy for arteriovenous malformations of the brain. N Engl J Med 309(5):269–274

    CAS  PubMed  Article  Google Scholar 

  22. Kjellberg RN, Shintani A, Frantz AG, Kliman B (1968) Proton-beam therapy in acromegaly. N Engl J Med 278(13):689–695

    CAS  PubMed  Article  Google Scholar 

  23. Barker FG 2nd, Butler WE, Lyons S et al (2003) Dose-volume prediction of radiation-related complications after proton beam radiosurgery for cerebral arteriovenous malformations. J Neurosurg 99(2):254–263

    PubMed  Article  Google Scholar 

  24. Lunsford LD (2003) Proton beam for arteriovenous malformations. J neurosurg. 99(2):222–223. discussion 223–224

    PubMed  Article  Google Scholar 

  25. Warren JWB, Jay SL, Shih H (2016) The history of linac and proton beam radiosurgery. In: Lunsford LD, Sheehan JP (eds) Intracranial stereotactic radiosurgery. 2nd edition. Thieme, New York

    Google Scholar 

  26. Adler JR Jr (2005) Accuray, incorporated: a neurosurgical business case study. Clin Neurosurg. 52:87–96

    PubMed  Google Scholar 

  27. Arsenjewa-Heil AHO (1935) A new method for producing short, undamped electromagnetic waves of high intensity. Zeitschrift für Physik. 1935(November):752–762

    Article  Google Scholar 

  28. Caryotakis G (1998) The klystron: a microwave source of surprising range and endurance. Phys Plasmas 5(5):1590–1598

    CAS  Article  Google Scholar 

  29. Varian RVS (1939) A high frequency oscillator and amplifier. J Appl Phys. 10:321–327

    Article  Google Scholar 

  30. Karzmark CJ, Pering NC (1973) Electron linear accelerators for radiation therapy: history, principles and contemporary developments. Phys Med Biol 18(3):321–354

    CAS  PubMed  Article  Google Scholar 

  31. Kaplan HS, Bagshaw MA (1957) The Stanford medical linear accelerator III Application to clinical problems of radiation therapy. Stanford Med Bull 15(3):141–151

    CAS  PubMed  Google Scholar 

  32. Colombo F, Benedetti A, Pozza F et al (1985) External stereotactic irradiation by linear accelerator. Neurosurgery. 16(2):154–160

    CAS  PubMed  Article  Google Scholar 

  33. Colombo F, Benedetti A, Pozza F et al (1985) Stereotactic radiosurgery utilizing a linear accelerator. Appl Neurophysiol 48(1–6):133–145

    CAS  PubMed  Google Scholar 

  34. Betti OO, Galmarini D, Derechinsky V (1991) Radiosurgery with a linear accelerator. Methodological aspects. Stereotact Funct Neurosurg 57(1–2):87–98

    CAS  PubMed  Article  Google Scholar 

  35. Winston KR, Lutz W (1988) Linear accelerator as a neurosurgical tool for stereotactic radiosurgery. Neurosurgery. 22(3):454–464

    CAS  PubMed  Article  Google Scholar 

  36. Weidlich GA, Bodduluri M, Achkire Y, Lee C, Adler JR Jr (2019) Characterization of a novel 3 megavolt linear accelerator for dedicated intracranial stereotactic radiosurgery. Cureus 11(3):e4275

    PubMed  PubMed Central  Google Scholar 

  37. Deng J, Ma CM, Hai J, Nath R (2003) Commissioning 6 MV photon beams of a stereotactic radiosurgery system for Monte Carlo treatment planning. Med Phys 30(12):3124–3134

    PubMed  Article  Google Scholar 

  38. Audet C, Poffenbarger BA, Chang P et al (2011) Evaluation of volumetric modulated arc therapy for cranial radiosurgery using multiple noncoplanar arcs. Med Phys 38(11):5863–5872

    PubMed  Article  Google Scholar 

  39. Steiner L, Leksell L, Greitz T, Forster DM, Backlund EO (1972) Stereotaxic radiosurgery for cerebral arteriovenous malformations Report of a case. Acta Chir Scand. 138(5):459–464

    CAS  PubMed  Google Scholar 

  40. Lunsford LD, Chiang V, Adler JR, Sheehan J, Friedman W, Kondziolka D (2012) A recommendation for training in stereotactic radiosurgery for US neurosurgery residents. J Neurosurg 117(Suppl):2–4

    PubMed  Article  Google Scholar 

  41. Elekta (2016) Elekta surpasses one million patients treated with Leksell Gamma Knife. https://www.elekta.com/meta/press-intern.html?id=211538a2-3239-42f9-a078-639aa6492f23. Accessed 20 July 2019

  42. Ho AL, Li AY, Sussman ES et al (2016) National trends in inpatient admissions following stereotactic radiosurgery and the in-hospital patient outcomes in the United States from 1998 to 2011. J Radiosurg SBRT 4(3):165–176

    PubMed  PubMed Central  Google Scholar 

  43. Yang I, Udawatta M, Prashant GN et al (2019) Stereotactic radiosurgery for neurosurgical patients: a historical review and current perspectives. World Neurosurg 122:522–531

    PubMed  Article  Google Scholar 

  44. Yamamoto M, Serizawa T, Shuto T et al (2014) Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncol 15(4):387–395

    PubMed  Article  Google Scholar 

  45. Niranjan A, Raju SS, Kooshkabadi A, Monaco E 3rd, Flickinger JC, Lunsford LD (2017) Stereotactic radiosurgery for essential tremor: Retrospective analysis of a 19-year experience. Mov Disord 32(5):769–777

    PubMed  Article  Google Scholar 

  46. Sheehan JP (2010) Resident perceptions of radiosurgical training and the effect of a focused resident training seminar. J Neurosurg 113(1):59–63

    PubMed  Article  Google Scholar 

  47. Nabavizadeh N, Burt LM, Mancini BR et al (2016) Results of the 2013–2015 association of residents in Radiation Oncology Survey of chief residents in the United States. Int J Radiat Oncol Biol Phys 94(2):228–234

    PubMed  Article  Google Scholar 

  48. Potters L, Gaspar LE, Kavanagh B et al (2010) American Society for Therapeutic Radiology and Oncology (ASTRO) and American College of Radiology (ACR) practice guidelines for image-guided radiation therapy (IGRT). Int J Radiat Oncol Biol Phys 76(2):319–325

    PubMed  Article  Google Scholar 

  49. Young RF, Li F, Vermeulen S, Meier R (2010) Gamma Knife thalamotomy for treatment of essential tremor: long-term results. J Neurosurg 112(6):1311–1317

    PubMed  Article  Google Scholar 

  50. McGonigal A, Sahgal A, De Salles A et al (2017) Radiosurgery for epilepsy: systematic review and International Stereotactic Radiosurgery Society (ISRS) practice guideline. Epilepsy Res. 137:123–131

    PubMed  Article  Google Scholar 

  51. Gupta A, Shepard MJ, Xu Z et al (2019) An International Radiosurgery Research Foundation Multicenter Retrospective Study of gamma ventral capsulotomy for obsessive compulsive disorder. Neurosurgery 85(6):808–816

    PubMed  Article  Google Scholar 

  52. Bristow RG, Alexander B, Baumann M et al (2018) Combining precision radiotherapy with molecular targeting and immunomodulatory agents: a guideline by the American Society for Radiation Oncology. Lancet Oncol 19(5):e240–e251

    PubMed  Article  Google Scholar 

  53. Zeng J, See AP, Phallen J et al (2013) Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 86(2):343–349

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Thomas JG, Parker Kerrigan BC, Hossain A et al (2018) Ionizing radiation augments glioma tropism of mesenchymal stem cells. J Neurosurg 128(1):287–295

    CAS  PubMed  Article  Google Scholar 

  55. Kotecha R, Kim JM, Miller JA et al (2019) The impact of sequencing PD-1/PD-L1 inhibitors and stereotactic radiosurgery for patients with brain metastasis. Neuro-oncology. https://doi.org/10.1093/neuonc/noz046

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ye JC, Formenti SC (2018) Integration of radiation and immunotherapy in breast cancer—treatment implications. Breast 38:66–74

    PubMed  Article  Google Scholar 

  57. Vanpouille-Box C, Alard A, Aryankalayil MJ et al (2017) DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun. 8:15618

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Funding

This publication was made possible through the support of the Eveleigh Family Career Development Award for Cancer Research at Mayo Clinic in Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Trifiletti.

Ethics declarations

Conflict of interest

DMT has received clinical trial funding from Novocure and publishing fees from Springer. The remaining authors declare that they have no conflict of interest.

Research involving human and/or animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No informed consent was required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trifiletti, D.M., Ruiz-Garcia, H., Quinones-Hinojosa, A. et al. The evolution of stereotactic radiosurgery in neurosurgical practice. J Neurooncol 151, 451–459 (2021). https://doi.org/10.1007/s11060-020-03392-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03392-0

Keywords

  • Neurosurgery
  • Stereotactic radiosurgery
  • History
  • Lars leksell
  • Gamma knife