Skip to main content

Advertisement

Log in

cMyc and ERK activity are associated with resistance to ALK inhibitory treatment in glioblastoma

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Background

Anaplastic lymphoma kinase (ALK) is expressed in ~ 60% of glioblastomas and conveys tumorigenic functions. Therefore, ALK inhibitory strategies with alectinib are conceivable for patients with glioblastoma. The aims of this preclinical study were to investigate efficacy as well as to understand and potentially overcome primary and acquired resistance mechanisms of alectinib in glioblastoma.

Methods

Efficacy of alectinib was analyzed dependent on ALK expression in different glioblastoma initiating cells and after lentiviral knockdown of ALK. Alectinib resistant cells were generated by continuous treatment with increasing alectinib doses over 3 months. M-RNA, phospho-protein and protein regulation were analyzed to decipher relevant pathways associated to treatment or resistance and specifically inhibited to evaluate rational salvage therapies.

Results

Alectinib reduced clonogenicity and proliferation and induced apoptosis in ALK expressing glioblastoma initiating cells, whereas cells without ALK expression or after ALK depletion via knockdown showed primary resistance against alectinib. High expression of cMyc and activation of the ERK1/2 pathway conferred resistance against alectinib in ALK expressing glioblastoma cells. Pharmacological inhibition of these pathways by cMyc inhibitor or MEK inhibitor, trametinib, overcame alectinib resistance and re-sensitized resistant cells to continued alectinib treatment. The combination of alectinib with radiotherapy demonstrated synergistic effects in inhibition of clonogenicity in non-resistant and alectinib resistant glioblastoma cells.

Conclusion

The data offer rationales for alectinib treatment in ALK expressing glioblastoma and for the use of ALK expression status as potential biomarker for alectinib treatment. In addition, the results propose MEK inhibition or radiotherapy as reasonable salvage treatments after acquired alectinib resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kinoshita K, Asoh K, Furuichi N, Ito T, Kawada H, Hara S, Ohwada J, Miyagi T, Kobayashi T, Takanashi K, Tsukaguchi T, Sakamoto H, Tsukuda T, Oikawa N (2012) Design and synthesis of a highly selective, orally active and potent anaplastic lymphoma kinase inhibitor (CH5424802). Bioorg Med Chem 20(3):1271–1280. https://doi.org/10.1016/j.bmc.2011.12.021

    Article  CAS  PubMed  Google Scholar 

  2. Peters S, Camidge DR, Shaw AT, Gadgeel S, Ahn JS, Kim DW, Ou SI, Perol M, Dziadziuszko R, Rosell R, Zeaiter A, Mitry E, Golding S, Balas B, Noe J, Morcos PN, Mok T, Investigators AT (2017) Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med 377(9):829–838. https://doi.org/10.1056/NEJMoa1704795

    Article  CAS  PubMed  Google Scholar 

  3. Hida T, Nokihara H, Kondo M, Kim YH, Azuma K, Seto T, Takiguchi Y, Nishio M, Yoshioka H, Imamura F, Hotta K, Watanabe S, Goto K, Satouchi M, Kozuki T, Shukuya T, Nakagawa K, Mitsudomi T, Yamamoto N, Asakawa T, Asabe R, Tanaka T, Tamura T (2017) Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial. Lancet 390(10089):29–39. https://doi.org/10.1016/S0140-6736(17)30565-2

    Article  CAS  PubMed  Google Scholar 

  4. Gadgeel S, Peters S, Mok T, Shaw AT, Kim DW, Ou SI, Perol M, Wrona A, Novello S, Rosell R, Zeaiter A, Liu T, Nuesch E, Balas B, Camidge DR (2018) Alectinib versus crizotinib in treatment-naive anaplastic lymphoma kinase-positive (ALK+) non-small-cell lung cancer: CNS efficacy results from the ALEX study. Ann Oncol. https://doi.org/10.1093/annonc/mdy405

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gourd E (2018) Alectinib shows CNS efficacy in ALK-positive NSCLC. Lancet Oncol 19(10):e520. https://doi.org/10.1016/S1470-2045(18)30707-1

    Article  CAS  PubMed  Google Scholar 

  6. Gainor JF, Sherman CA, Willoughby K, Logan J, Kennedy E, Brastianos PK, Chi AS, Shaw AT (2015) Alectinib salvages CNS relapses in ALK-positive lung cancer patients previously treated with crizotinib and ceritinib. J Thorac Oncol 10(2):232–236. https://doi.org/10.1097/JTO.0000000000000455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, Kurashina K, Hatanaka H, Bando M, Ohno S, Ishikawa Y, Aburatani H, Niki T, Sohara Y, Sugiyama Y, Mano H (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448(7153):561–566. https://doi.org/10.1038/nature05945

    Article  CAS  PubMed  Google Scholar 

  8. Morris SW, Kirstein MN, Valentine MB, Dittmer K, Shapiro DN, Look AT, Saltman DL (1995) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 267(5196):316–317

    Article  CAS  PubMed  Google Scholar 

  9. Chen Y, Takita J, Choi YL, Kato M, Ohira M, Sanada M, Wang L, Soda M, Kikuchi A, Igarashi T, Nakagawara A, Hayashi Y, Mano H, Ogawa S (2008) Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455(7215):971–974. https://doi.org/10.1038/nature07399

    Article  CAS  PubMed  Google Scholar 

  10. George RE, Sanda T, Hanna M, Frohling S, Luther W 2nd, Zhang J, Ahn Y, Zhou W, London WB, McGrady P, Xue L, Zozulya S, Gregor VE, Webb TR, Gray NS, Gilliland DG, Diller L, Greulich H, Morris SW, Meyerson M, Look AT (2008) Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 455(7215):975–978. https://doi.org/10.1038/nature07397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Osajima-Hakomori Y, Miyake I, Ohira M, Nakagawara A, Nakagawa A, Sakai R (2005) Biological role of anaplastic lymphoma kinase in neuroblastoma. Am J Pathol 167(1):213–222. https://doi.org/10.1016/S0002-9440(10)62966-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hallberg B, Palmer RH (2013) Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat Rev Cancer 13(10):685–700. https://doi.org/10.1038/nrc3580

    Article  CAS  PubMed  Google Scholar 

  13. Pulford K, Morris SW, Turturro F (2004) Anaplastic lymphoma kinase proteins in growth control and cancer. J Cell Physiol 199(3):330–358. https://doi.org/10.1002/jcp.10472

    Article  CAS  PubMed  Google Scholar 

  14. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA Jr, Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812. https://doi.org/10.1126/science.1164382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cancer Genome Atlas Research N (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068. https://doi.org/10.1038/nature07385

    Article  CAS  Google Scholar 

  16. Karagkounis G, Stranjalis G, Argyrakos T, Pantelaion V, Mastoris K, Rontogianni D, Komaitis S, Kalamatianos T, Sakas D, Tiniakos D (2017) Anaplastic lymphoma kinase expression and gene alterations in glioblastoma: correlations with clinical outcome. J Clin Pathol 70(7):593–599. https://doi.org/10.1136/jclinpath-2016-204102

    Article  CAS  PubMed  Google Scholar 

  17. Ferguson SD, Xiu J, Weathers SP, Zhou S, Kesari S, Weiss SE, Verhaak RG, Hohl RJ, Barger GR, Reddy SK, Heimberger AB (2016) GBM-associated mutations and altered protein expression are more common in young patients. Oncotarget 7(43):69466–69478. https://doi.org/10.18632/oncotarget.11617

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wellstein A (2012) ALK receptor activation, ligands and therapeutic targeting in glioblastoma and in other cancers. Front Oncol 2:192. https://doi.org/10.3389/fonc.2012.00192

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chiba R, Akiya M, Hashimura M, Oguri Y, Inukai M, Hara A, Saegusa M (2017) ALK signaling cascade confers multiple advantages to glioblastoma cells through neovascularization and cell proliferation. PLoS ONE 12(8):e0183516. https://doi.org/10.1371/journal.pone.0183516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stylianou DC, Auf der Maur A, Kodack DP, Henke RT, Hohn S, Toretsky JA, Riegel AT, Wellstein A (2009) Effect of single-chain antibody targeting of the ligand-binding domain in the anaplastic lymphoma kinase receptor. Oncogene 28(37):3296–3306. https://doi.org/10.1038/onc.2009.184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Powers C, Aigner A, Stoica GE, McDonnell K, Wellstein A (2002) Pleiotrophin signaling through anaplastic lymphoma kinase is rate-limiting for glioblastoma growth. J Biol Chem 277(16):14153–14158. https://doi.org/10.1074/jbc.M112354200

    Article  CAS  PubMed  Google Scholar 

  22. Grzelinski M, Steinberg F, Martens T, Czubayko F, Lamszus K, Aigner A (2009) Enhanced antitumorigenic effects in glioblastoma on double targeting of pleiotrophin and its receptor ALK. Neoplasia 11(2):145–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Koyama-Nasu R, Haruta R, Nasu-Nishimura Y, Taniue K, Katou Y, Shirahige K, Todo T, Ino Y, Mukasa A, Saito N, Matsui M, Takahashi R, Hoshino-Okubo A, Sugano H, Manabe E, Funato K, Akiyama T (2014) The pleiotrophin-ALK axis is required for tumorigenicity of glioblastoma stem cells. Oncogene 33(17):2236–2244. https://doi.org/10.1038/onc.2013.168

    Article  CAS  PubMed  Google Scholar 

  24. Le Rhun E, Chamberlain MC, Zairi F, Delmaire C, Idbaih A, Renaud F, Maurage CA, Gregoire V (2015) Patterns of response to crizotinib in recurrent glioblastoma according to ALK and MET molecular profile in two patients. CNS Oncol 4(6):381–386. https://doi.org/10.2217/cns.15.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wick W, Dettmer S, Berberich A, Kessler T, Karapanagiotou-Schenkel I, Wick A, Winkler F, Pfaff E, Brors B, Debus J, Unterberg A, Bendszus M, Herold-Mende C, Eisenmenger A, von Deimling A, Jones DTW, Pfister SM, Sahm F, Platten M (2018) N2M2 (NOA20) phase I/II trial of molecularly matched targeted therapies plus radiotherapy in patients with newly diagnosed non-MGMT hypermethylated glioblastoma. Neuro Oncol. https://doi.org/10.1093/neuonc/noy161

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pfaff E, Kessler T, Balasubramanian GP, Berberich A, Schrimpf D, Wick A, Debus J, Unterberg A, Bendszus M, Herold-Mende C, Capper D, Schenkel I, Eisenmenger A, Dettmer S, Brors B, Platten M, Pfister SM, von Deimling A, Jones DTW, Wick W, Sahm F (2018) Feasibility of real-time molecular profiling for patients with newly diagnosed glioblastoma without MGMT promoter hypermethylation-the NCT Neuro Master Match (N2M2) pilot study. Neuro Oncol 20(6):826–837. https://doi.org/10.1093/neuonc/nox216

    Article  CAS  PubMed  Google Scholar 

  27. Lemke D, Weiler M, Blaes J, Wiestler B, Jestaedt L, Klein AC, Low S, Eisele G, Radlwimmer B, Capper D, Schmieder K, Mittelbronn M, Combs SE, Bendszus M, Weller M, Platten M, Wick W (2014) Primary glioblastoma cultures: can profiling of stem cell markers predict radiotherapy sensitivity? J Neurochem 131(2):251–264. https://doi.org/10.1111/jnc.12802

    Article  CAS  PubMed  Google Scholar 

  28. Campeau E, Ruhl VE, Rodier F, Smith CL, Rahmberg BL, Fuss JO, Campisi J, Yaswen P, Cooper PK, Kaufman PD (2009) A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS ONE 4(8):e6529. https://doi.org/10.1371/journal.pone.0006529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Berberich A, Kessler T, Thome CM, Pusch S, Hielscher T, Sahm F, Oezen I, Schmitt LM, Ciprut S, Hucke N, Rubmann P, Fischer M, Lemke D, Breckwoldt MO, von Deimling A, Bendszus M, Platten M, Wick W (2018) Targeting resistance against the MDM2 inhibitor RG7388 in glioblastoma cells by the MEK inhibitor trametinib. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-18-1580

    Article  PubMed  Google Scholar 

  30. Hu Y, Smyth GK (2009) ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods 347(1–2):70–78. https://doi.org/10.1016/j.jim.2009.06.008

    Article  CAS  PubMed  Google Scholar 

  31. Hertenstein A, Schumacher T, Litzenburger U, Opitz CA, Falk CS, Serafini T, Wick W, Platten M (2011) Suppression of human CD4+ T cell activation by 3,4-dimethoxycinnamonyl-anthranilic acid (tranilast) is mediated by CXCL9 and CXCL10. Biochem Pharmacol 82(6):632–641. https://doi.org/10.1016/j.bcp.2011.06.013

    Article  CAS  PubMed  Google Scholar 

  32. Bliss CI (1939) The toxicity of poisons applied jointly. Ann Appl Biol 26:585–615

    Article  Google Scholar 

  33. Gainor JF, Dardaei L, Yoda S, Friboulet L, Leshchiner I, Katayama R, Dagogo-Jack I, Gadgeel S, Schultz K, Singh M, Chin E, Parks M, Lee D, DiCecca RH, Lockerman E, Huynh T, Logan J, Ritterhouse LL, Le LP, Muniappan A, Digumarthy S, Channick C, Keyes C, Getz G, Dias-Santagata D, Heist RS, Lennerz J, Sequist LV, Benes CH, Iafrate AJ, Mino-Kenudson M, Engelman JA, Shaw AT (2016) Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov 6(10):1118–1133. https://doi.org/10.1158/2159-8290.CD-16-0596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Golding B, Luu A, Jones R, Viloria-Petit AM (2018) The function and therapeutic targeting of anaplastic lymphoma kinase (ALK) in non-small cell lung cancer (NSCLC). Mol Cancer 17(1):52. https://doi.org/10.1186/s12943-018-0810-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gadgeel SM, Gandhi L, Riely GJ, Chiappori AA, West HL, Azada MC, Morcos PN, Lee RM, Garcia L, Yu L, Boisserie F, Di Laurenzio L, Golding S, Sato J, Yokoyama S, Tanaka T, Ou SH (2014) Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncol 15(10):1119–1128. https://doi.org/10.1016/S1470-2045(14)70362-6

    Article  CAS  PubMed  Google Scholar 

  36. Kodama T, Hasegawa M, Takanashi K, Sakurai Y, Kondoh O, Sakamoto H (2014) Antitumor activity of the selective ALK inhibitor alectinib in models of intracranial metastases. Cancer Chemother Pharmacol 74(5):1023–1028. https://doi.org/10.1007/s00280-014-2578-6

    Article  CAS  PubMed  Google Scholar 

  37. Iwahara T, Fujimoto J, Wen D, Cupples R, Bucay N, Arakawa T, Mori S, Ratzkin B, Yamamoto T (1997) Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene 14(4):439–449. https://doi.org/10.1038/sj.onc.1200849

    Article  CAS  PubMed  Google Scholar 

  38. Rihawi K, Alfieri R, Fiorentino M, Fontana F, Capizzi E, Cavazzoni A, Terracciano M, La Monica S, Ferrarini A, Buson G, Petronini PG, Ardizzoni A (2018) MYC amplification as a potential mechanism of primary resistance to crizotinib in ALK-rearranged non-small cell lung cancer: a brief report. Transl Oncol 12(1):116–121. https://doi.org/10.1016/j.tranon.2018.09.013

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pilling AB, Kim J, Estrada-Bernal A, Zhou Q, Le AT, Singleton KR, Heasley LE, Tan AC, DeGregori J, Doebele RC (2018) ALK is a critical regulator of the MYC-signaling axis in ALK positive lung cancer. Oncotarget 9(10):8823–8835. https://doi.org/10.18632/oncotarget.24260

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G (2008) The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer 8(1):11–23. https://doi.org/10.1038/nrc2291

    Article  CAS  PubMed  Google Scholar 

  41. Shaw AT, Friboulet L, Leshchiner I, Gainor JF, Bergqvist S, Brooun A, Burke BJ, Deng YL, Liu W, Dardaei L, Frias RL, Schultz KR, Logan J, James LP, Smeal T, Timofeevski S, Katayama R, Iafrate AJ, Le L, McTigue M, Getz G, Johnson TW, Engelman JA (2016) Resensitization to crizotinib by the lorlatinib ALK resistance mutation L1198F. N Engl J Med 374(1):54–61. https://doi.org/10.1056/NEJMoa1508887

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

L.S. was funded by the German Cancer Aid while performing this study (Funding No. 70112464). N2M2 is funded by the German Cancer Aid (7011980) and the resistance studies by DFG SFB 1389 TP A03 to W.W. and T.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Wick.

Ethics declarations

Conflicts of interest

The authors declare no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berberich, A., Schmitt, LM., Pusch, S. et al. cMyc and ERK activity are associated with resistance to ALK inhibitory treatment in glioblastoma. J Neurooncol 146, 9–23 (2020). https://doi.org/10.1007/s11060-019-03348-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-019-03348-z

Keywords

Navigation