Skip to main content
Log in

Beyond eloquence and onto centrality: a new paradigm in planning supratentorial neurosurgery

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Minimizing post-operational neurological deficits as a result of brain surgery has been one of the most pertinent endeavours of neurosurgical research. Studies have utilised fMRIs, EEGs and MEGs in order to delineate and establish eloquent areas, however, these methods have not been utilized by the wider neurosurgical community due to a lack of clinical endpoints. We sought to ascertain if there is a correlation between graph theory metrics and the neurosurgical notion of eloquent brain regions. We also wanted to establish which graph theory based nodal centrality measure performs the best in predicting eloquent areas.

Methods

We obtained diffusion neuroimaging data from the Human Connectome Project (HCP) and applied a parcellation scheme to it. This enabled us to construct a weighted adjacency matrix which we then analysed. Our analysis looked at the correlation between PageRank centrality and eloquent areas. We then compared PageRank centrality to eigenvector centrality and degree centrality to see what the best measure of empirical neurosurgical eloquence was.

Results

Areas that are considered neurosurgically eloquent tended to be predicted by high PageRank centrality. By using summary scores for the three nodal centrality measures we found that PageRank centrality best correlated to empirical neurosurgical eloquence.

Conclusion

The notion of eloquent areas is important to neurosurgery and graph theory provides a mathematical framework to predict these areas. PageRank centrality is able to consistently find areas that we consider eloquent. It is able to do so better than eigenvector and degree central measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Duffau H, Capelle L, Denvil D et al (2003) Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: functional results in a consecutive series of 103 patients. J Neurosurg 98(4):764–778

    PubMed  Google Scholar 

  2. Chang EF, Clark A, Smith JS et al (2011) Functional mapping-guided resection of low-grade gliomas in eloquent areas of the brain: improvement of long-term survival. J Neurosurg 114(3):566–573

    PubMed  Google Scholar 

  3. Ius T, Isola M, Budai R, et al. (2012) Low-grade glioma surgery in eloquent areas: volumetric analysis of extent of resection and its impact on overall survival. A single-institution experience in 190 patients. J Neurosurg 117(6), 1039–1052.

    PubMed  Google Scholar 

  4. Feigl GC, Ritz R, Moraes M et al (2010) Resection of malignant brain tumors in eloquent cortical areas: a new multimodal approach combining 5-aminolevulinic acid and intraoperative monitoring. J Neurosurg 113(2):352–357

    PubMed  Google Scholar 

  5. Collinge S, Prendergast G, Mayers ST et al (2017) Pre-surgical mapping of eloquent cortex for paediatric epilepsy surgery candidates: evidence from a review of advanced functional neuroimaging. Seizure 52:136–146

    PubMed  Google Scholar 

  6. Spreer J, Arnold S, Quiske A et al (2002) Determination of hemisphere dominance for language: comparison of frontal and temporal fMRI activation with intracarotid amytal testing. Neuroradiology 44(6):467–474

    CAS  PubMed  Google Scholar 

  7. Szaflarski JP, Holland SK, Jacola LM, Lindsell C, Privitera MD, Szaflarski M (2008) Comprehensive presurgical functional MRI language evaluation in adult patients with epilepsy. Epilepsy Behav 12(1):74–83

    PubMed  Google Scholar 

  8. Arora J, Pugh K, Westerveld M, Spencer S, Spencer DD, Todd CR (2009) Language lateralization in epilepsy patients: fMRI validated with the Wada procedure. Epilepsia 50(10):2225–2241

    PubMed  Google Scholar 

  9. Mason O, Verwoerd M (2007) Graph theory and networks in biology. IET Syst Biol 1(2):89–119

    CAS  PubMed  Google Scholar 

  10. Krishnan A, Zbilut JP, Tomita M, Giuliani A (2008) Proteins as networks: usefulness of graph theory in protein science. Curr Protein Pept Sci 9(1):28–38

    CAS  PubMed  Google Scholar 

  11. Pavlopoulos GA, Secrier M, Moschopoulos CN et al (2011) Using graph theory to analyze biological networks. BioData Min 4:10

    PubMed  PubMed Central  Google Scholar 

  12. Ajilore O, Lamar M, Leow A, Zhang A, Yang S, Kumar A (2014) Graph theory analysis of cortical-subcortical networks in late-life depression. Am J Geriatr Psychiatry 22(2):195–206

    PubMed  Google Scholar 

  13. Lohmann G, Margulies DS, Horstmann A et al (2010) Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS ONE 5(4):e10232

    PubMed  PubMed Central  Google Scholar 

  14. Vecchio F, Miraglia F, Marra C et al (2014) Human brain networks in cognitive decline: a graph theoretical analysis of cortical connectivity from EEG data. J Alzheimers Dis 41(1):113–127

    PubMed  Google Scholar 

  15. Vecchio F, Miraglia F, Bramanti P, Rossini PM (2014) Human brain networks in physiological aging: a graph theoretical analysis of cortical connectivity from EEG data. J Alzheimers Dis 41(4):1239–1249

    PubMed  Google Scholar 

  16. De Vico FF, Richiardi J, Chavez M, Achard S (2014) Graph analysis of functional brain networks: practical issues in translational neuroscience. Philos Trans R Soc 369(1653):20130521

    Google Scholar 

  17. Senanayake U, Piraveenan M, Zomaya A (2015) The pagerank-index: going beyond citation counts in quantifying scientific impact of researchers. PLoS ONE 10(8):e0134794

    PubMed  PubMed Central  Google Scholar 

  18. Spetzler RF, Martin NA (1986) A proposed grading system for arteriovenous malformations. J Neurosurg 65(4):476–483

    CAS  PubMed  Google Scholar 

  19. Yeh FC, Wedeen VJ, Tseng WY (2010) Generalized q-sampling imaging. IEEE Trans Med Imaging 29(9):1626–1635

    PubMed  Google Scholar 

  20. Glasser MF, Coalson TS, Robinson EC et al (2016) A multi-modal parcellation of human cerebral cortex. Nature 536(7615):171–178

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Van Essen DC, Glasser MF (2016) The human connectome project:progress and prospects. Cerebrum. Dana Foundation, New York, pp 10–16

    Google Scholar 

  22. Martino J, De Witt Hamer PC, Berger MS et al (2013) Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: a fiber dissection and DTI tractography study. Brain Struct Funct 218(1):105–121

    PubMed  Google Scholar 

  23. Hagberg AA, Schult DA, Swart PJ (2008) Exploring network structure, dynamics, and function using NetworkX. Paper presented at: 7th python in science conference (SciPy2008)2008; Pasadena, USA.

  24. Martino J, Honma SM, Findlay AM et al (2011) Resting functional connectivity in patients with brain tumors in eloquent areas. Ann Neurol 69(3):521–532

    PubMed  PubMed Central  Google Scholar 

  25. Baker CM, Burks JD, Briggs RG et al (2018) A connectomic atlas of the human cerebrum-chapter 9:the occipital lobe. Oper Neurosurg 15:S372–S406

    Google Scholar 

  26. Baker CM, Burks JD, Briggs RG et al (2018) A connectomic atlas of the human cerebrum-chapter 4:the medial frontal lobe, anterior cingulate gyrus, and orbitofrontal cortex. Oper Neurosurg 15:S122–S174

    Google Scholar 

  27. Baker CM, Burks JD, Briggs RG et al (2018) A connectomic atlas of the human cerebrum-chapter 3:the motor, premotor, and sensory cortices. Oper Neurosurg 15:S75–S121

    Google Scholar 

  28. Baker CM, Burks JD, Briggs RG et al (2018) A connectomic atlas of the human cerebrum-chapter 2:the lateral frontal lobe. Oper Neurosurg 15:S10–S74

    Google Scholar 

  29. Baker CM, Burks JD, Briggs RG et al (2018) A connectomic atlas of the human cerebrum-chapter 1:introduction, methods, and significance. Oper Neurosurg 15:S1–S9

    Google Scholar 

  30. Baker CM, Burks JD, Briggs RG et al (2018) A connectomic atlas of the human cerebrum-chapter 5:the insula and opercular cortex. Oper Neurosurg 15:S175–S244

    Google Scholar 

  31. Baker CM, Burks JD, Briggs RG et al (2018) A connectomic atlas of the human cerebrum-chapter 6:the temporal lobe. Oper Neurosurg 15:S245–S294

    Google Scholar 

  32. Baker CM, Burks JD, Briggs RG et al (2018) A connectomic atlas of the human cerebrum-chapter 7:the lateral parietal lobe. Oper Neurosur 15:S295–S349

    Google Scholar 

  33. Baker CM, Burks JD, Briggs RG et al (2018) A connectomic atlas of the human cerebrum-chapter 8:the posterior cingulate cortex, medial parietal lobe and parieto-occipital sulcus. Oper Neurosurg 15:S350–S371

    Google Scholar 

  34. McGirt MJ, Mukherjee D, Chaichana KL, Than KD, Weingart JD, Quinones-Hinojosa A (2009) Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery 65(3):463–469

    PubMed  Google Scholar 

  35. Mukand JA, Blackinton DD, Crincoli MG, Lee JJ, Santos BB (2001) Incidence of neurologic deficits and rehabilitation of patients with brain tumors. Am J Phys Med Rehabil 80(5):346–350

    CAS  PubMed  Google Scholar 

  36. Ahlswede R, Ning C, Li SYR, Yeung RW (2000) Network information flow. IEEE Trans Inf Theory 46(4):1204–1216

    Google Scholar 

  37. Lungarella M, Sporns O (2006) Mapping information flow in sensorimotor networks. PLoS Comput Biol 2(10):e144

    PubMed  PubMed Central  Google Scholar 

  38. Piraveenan M, Prokopenko M, Hossain L (2013) Percolation centrality: quantifying graph-theoretic impact of nodes during percolation in networks. PLoS ONE 8(1):e53095

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Li D, Zhang Q, Zio E, Havlin S, Kang R (2015) Network reliability analysis based on percolation theory. Reliab Eng Syst Saf 142:556–562

    Google Scholar 

  40. Del Ferraro G, Moreno A, Min B et al (2018) Finding influential nodes for integration in brain networks using optimal percolation theory. Nat Commun. 9(1):2274

    PubMed  PubMed Central  Google Scholar 

  41. Morone F, Makse HA (2015) Influence maximization in complex networks through optimal percolation. Nature 524(7563):65–68

    CAS  PubMed  Google Scholar 

  42. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26(1):63–72

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12(6):512–523

    PubMed  Google Scholar 

  44. Watts DJ, Strogatz SH (1998) Collective dynamics of 'small-world' networks. Nature 393(6684):440–442

    CAS  Google Scholar 

  45. Boulton M, Bernstein M (2008) Outpatient brain tumor surgery: innovation in surgical neurooncology. J Neurosurg 108(4):649–654

    PubMed  Google Scholar 

  46. Winston GP, Daga P, White MJ et al (2014) Preventing visual field deficits from neurosurgery. Neurology 83(7):604–611

    PubMed  PubMed Central  Google Scholar 

  47. Chang EF, Gabriel RA, Potts MB, Garcia PA, Barbaro NM, Lawton MT (2009) Seizure characteristics and control after microsurgical resection of supratentorial cerebral cavernous malformations. Neurosurgery 65(1):31–37

    PubMed  Google Scholar 

  48. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198

    CAS  PubMed  Google Scholar 

  49. Fletcher JM, Wennekers T (2018) From structure to activity: using centrality measures to predict neuronal activity. Int J Neural Syst 28(2):1750013

    PubMed  Google Scholar 

  50. Zrinzo L (2012) Pitfalls in precision stereotactic surgery. Surg Neurol Int 3(Suppl 1):S53–61

    PubMed  PubMed Central  Google Scholar 

  51. Lang S (2017) Cognitive eloquence in neurosurgery: Insight from graph theoretical analysis of complex brain networks. Med Hypotheses 98:49–56

    PubMed  Google Scholar 

  52. Pouratian N, Bookheimer SY (2010) The reliability of neuroanatomy as a predictor of eloquence: a review. Neurosurg Focus 28(2):E3

    PubMed  Google Scholar 

  53. Yeh FC, Tang PF, Tseng WY (2013) Diffusion MRI connectometry automatically reveals affected fiber pathways in individuals with chronic stroke. Neuroimage Clin 2:912–921

    PubMed  PubMed Central  Google Scholar 

  54. Wedeen VJ, Wang RP, Schmahmann JD et al (2008) Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage 41(4):1267–1277

    CAS  PubMed  Google Scholar 

  55. Yeh FC, Tseng WY (2011) NTU-90: a high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. Neuroimage 58(1):91–99

    PubMed  Google Scholar 

  56. Fischer FU, Wolf D, Scheurich A, Fellgiebel A (2014) Association of structural global brain network properties with intelligence in normal aging. PLoS ONE 9(1):e86258

    PubMed  PubMed Central  Google Scholar 

  57. Sole-Casals J, Serra-Grabulosa JM, Romero-Garcia R et al (2019) Structural brain network of gifted children has a more integrated and versatile topology. Brain Struct Funct 224(7):2373–2383

    CAS  PubMed  Google Scholar 

  58. Koenis MMG, Brouwer RM, Swagerman SC, van Soelen ILC, Boomsma DI, Hulshoff Pol HE (2018) Association between structural brain network efficiency and intelligence increases during adolescence. Hum Brain Mapp 39(2):822–836

    PubMed  Google Scholar 

  59. Li Y, Liu Y, Li J et al (2009) Brain anatomical network and intelligence. PLoS Comput Biol 5(5):e1000395

    PubMed  PubMed Central  Google Scholar 

  60. van den Heuvel MP, Stam CJ, Kahn RS, Hulshoff Pol HE (2009) Efficiency of functional brain networks and intellectual performance. J Neurosci 29(23):7619–7624

    PubMed  PubMed Central  Google Scholar 

  61. Xu H, Ding S, Hu X et al (2013) Reduced efficiency of functional brain network underlying intellectual decline in patients with low-grade glioma. Neurosci Lett 543:27–31

    CAS  PubMed  Google Scholar 

  62. Pezoulas VC, Zervakis M, Michelogiannis S, Klados MA (2017) Resting-state functional connectivity and network analysis of cerebellum with respect to [corrected] IQ and gender. Front Hum Neurosci 11:189

    PubMed  PubMed Central  Google Scholar 

  63. Bohlken MM, Brouwer RM, Mandl RC et al (2016) Structural brain connectivity as a genetic marker for schizophrenia. JAMA Psychiatry 73(1):11–19

    PubMed  Google Scholar 

  64. Ajilore O, Lamar M, Kumar A (2014) Association of brain network efficiency with aging, depression, and cognition. Am J Geriatr Psychiatry 22(2):102–110

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Edward Sughrue.

Ethics declarations

Conflicts of interest

Dr Mike E. Sughrue receives a consulting fee for teaching educational courses for Medtronic and Synaptive. Dr Charles Teo is a consultant for Aesculap. The other authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Ethical approval

This study uses publicly available deidentified MRI data from the Human Connectome Project (HCP) and thus does not require an ethics approval.

Informed consent

The data this study utilises comes from the HCP which obtained informed consent from the participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahsan, S.A., Chendeb, K., Briggs, R.G. et al. Beyond eloquence and onto centrality: a new paradigm in planning supratentorial neurosurgery. J Neurooncol 146, 229–238 (2020). https://doi.org/10.1007/s11060-019-03327-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-019-03327-4

Keywords

Navigation