Skip to main content

Advertisement

Log in

TRIM44 is indispensable for glioma cell proliferation and cell cycle progression through AKT/p21/p27 signaling pathway

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Glioma is one of the lethal cancers which needs effective therapeutic target. TRIM44 has been found playing a carcinogenic role in human tumors such as breast cancer and ovarian cancer. However, the pathophysiological significance of TRIM44 in glioma is still unclear.

Methods

Quantitative-PCR and western blot were used to assess the expression of TRIM44 in glioma cells. For cell proliferation, Brdu incorporation and colony formation assays were performed. By Caspase 3 staining and FACS analysis, we revealed that TRIM44 knockdown induced glioma cell apoptosis. A BALB/c nude mouse xenograft model and following immunohistochemical (IHC) staining enables us to explore the effect of TRIM44 deletion on glioma growth in vivo. Western blot of p21, p27 and AKT indicated the possible role of TRIM44 in regulation AKT pathway in glioma.

Results

TRIM44 was significantly elevated in glioma cells, and high expression of TRIM44 is related to poor prognostic of glioma patients. TRIM44 knockdown by shRNAs inhibit glioma cell proliferation, migration, induced cell cycle disruption and further cellular apoptosis in vitro. As well, TRIM44 inactivation obviously inhibit tumor growth in xenograft model. Furthermore, the negative cell cycle regulators p21/p27 are significantly upregulated, while AKT which is known as the main regulator of p21/p27 is inactivated in TRIM44-dificient cells. These results suggested that TRIM44 inactivation disrupted cell cycle progression and inhibit cell proliferation through AKT/p21/p27 pathway in glioma.

Conclusion

TRIM44 was associated with oncogenic potential of glioma. Targeting TRIM44 might be beneficial for glioma therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Loeper S, Romeike BFM, Heckmann N, Jung V, Henn W, Feiden W et al (2001) Frequent mitotic errors in tumor cells of genetically micro-heterogeneous glioblastomas. Cytogenet Cell Genet 94(1–2):1–8

    CAS  PubMed  Google Scholar 

  2. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109

    PubMed  PubMed Central  Google Scholar 

  3. Kuhnt D, Becker A, Ganslandt O, Bauer M, Buchfelder M, Nimsky C (2011) Correlation of the extent of tumor volume resection and patient survival in surgery of glioblastoma multiforme with high-field intraoperative MRI guidance. Neuro Oncol 13(12):1339–1348

    PubMed  PubMed Central  Google Scholar 

  4. Jovcevska I, Kocevar N, Komel R (2013) Glioma and glioblastoma—how much do we (not) know? Mol Clin Oncol 1(6):935–941

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wei J, Gabrusiewicz K, Heimberger A (2013) The controversial role of microglia in malignant gliomas. Clin Dev Immunol. https://doi.org/10.1155/2013/285246

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kesari S, Schiff D, Henson JW, Muzikansky A, Gigas DC, Doherty L et al (2008) Phase II study of temozolomide, thalidomide, and celecoxib for newly diagnosed glioblastoma in adults. Neuro Oncol 10(3):300–308

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Werner MH, Phuphanich S, Lyman GH (1995) The increasing incidence of malignant gliomas and primary central-nervous-system lymphoma in the elderly. Cancer 76(9):1634–1642

    CAS  PubMed  Google Scholar 

  8. Baumann F, Bjeljac M, Kollias SS, Baumert BG, Brandner S, Rousson V et al (2004) Combined thalidomide and temozolomide treatment in patients with glioblastoma multiforme. J Neurooncol 67(1–2):191–200

    PubMed  Google Scholar 

  9. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    CAS  PubMed  Google Scholar 

  10. Boutou E, Matsas R, Mamalaki A (2001) Isolation of a mouse brain cDNA expressed in developing neuroblasts and mature neurons. Brain Res Mol Brain Res 86(1–2):153–167

    CAS  PubMed  Google Scholar 

  11. Carthagena L, Bergamaschi A, Luna JM, David A, Uchil PD, Margottin-Goguet F et al (2009) Human TRIM gene expression in response to interferons. PLoS ONE 4(3):e4894

    PubMed  PubMed Central  Google Scholar 

  12. Ozato K, Shin DM, Chang TH, Morse HC (2008) TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol 8(11):849–860

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Meroni G, Diez-Roux G (2005) TRIM/RBCC, a novel class of 'single protein RING finger' E3 ubiquitin ligases. BioEssays 27(11):1147–1157

    CAS  PubMed  Google Scholar 

  14. Yang B, Wang J, Wang Y, Zhou H, Wu X, Tian Z et al (2013) Novel function of Trim44 promotes an antiviral response by stabilizing VISA. J Immunol 190(7):3613–3619

    CAS  PubMed  Google Scholar 

  15. Zhu X, Wu Y, Miao X, Li C, Yin H, Yang S et al (2016) High expression of TRIM44 is associated with enhanced cell proliferation, migration, invasion, and resistance to doxorubicin in hepatocellular carcinoma. Tumour Biol 37(11):14615–14628

    CAS  PubMed  Google Scholar 

  16. Kashimoto K, Komatsu S, Ichikawa D, Arita T, Konishi H, Nagata H et al (2012) Overexpression of TRIM44 contributes to malignant outcome in gastric carcinoma. Cancer Sci 103(11):2021–2026

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Peters CJ, Rees JRE, Hardwick RH, Hardwick JS, Vowler SL, Ong CAJ et al (2010) A 4-gene signature predicts survival of patients with resected adenocarcinoma of the esophagus, junction, and gastric cardia. Gastroenterology 139(6):1995–U280

    CAS  PubMed  Google Scholar 

  18. Xing Y, Meng Q, Chen X, Zhao Y, Liu W, Hu J et al (2016) TRIM44 promotes proliferation and metastasis in nonsmall cell lung cancer via mTOR signaling pathway. Oncotarget 7(21):30479–91

    PubMed  PubMed Central  Google Scholar 

  19. Luo Q, Lin H, Ye X, Huang J, Lu S, Xu L (2015) Trim44 facilitates the migration and invasion of human lung cancer cells via the NF-kappaB signaling pathway. Int J Clin Oncol 20(3):508–17

    CAS  PubMed  Google Scholar 

  20. Kawabata H, Azuma K, Ikeda K, Sugitani I, Kinowaki K, Fujii T et al (2017) TRIM44 is a poor prognostic factor for breast cancer patients as a modulator of NF-kappaB signaling. Int J Mol Sci. https://doi.org/10.3390/ijms18091931

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ong CA, Shannon NB, Ross-Innes CS, O'Donovan M, Rueda OM, Hu DE et al (2014) Amplification of TRIM44: pairing a prognostic target with potential therapeutic strategy. J Natl Cancer Inst. https://doi.org/10.1093/jnci/dju050

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li L, Shao MY, Zou SC, Xiao ZF, Chen ZC (2019) MiR-101-3p inhibits EMT to attenuate proliferation and metastasis in glioblastoma by targeting TRIM44. J Neurooncol 141(1):19–30

    CAS  PubMed  Google Scholar 

  23. Wang X, Gao P, Long M, Lin F, Wei JX, Ren JH et al (2011) Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol 28(4):1225–54

    CAS  PubMed  Google Scholar 

  24. Fillies T, Woltering M, Brandt B, Van Diest JP, Werkmeister R, Joos U et al (2007) Cell cycle regulating proteins p21 and p27 in prognosis of oral squamous cell carcinomas. Oncol Rep 17(2):355–9

    CAS  PubMed  Google Scholar 

  25. Somasundaram K, Zhang HB, Zeng YX, Houvras Y, Peng Y, Zhang HX et al (1997) Arrest of the cell cycle by the tumour-suppressor BRCA1 requires the CDK-inhibitor p21(WAF1/CiP1). Nature 389(6647):187–90

    CAS  PubMed  Google Scholar 

  26. Polyak K, Lee MH, Erdjumentbromage H, Koff A, Roberts JM, Tempst P et al (1994) Cloning of P27(Kip1), a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78(1):59–66

    CAS  PubMed  Google Scholar 

  27. Longo PA, Kavran JM, Kim MS, Leahy DJ (2013) Transient mammalian cell transfection with polyethylenimine (PEI). Methods Enzymol 529:227–40

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Geraerts M, Willems S, Baekelandt V, Debyser Z, Gijsbers R (2006) Comparison of lentiviral vector titration methods. BMC Biotechnol 6:34

    PubMed  PubMed Central  Google Scholar 

  29. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–8

    CAS  PubMed  Google Scholar 

  30. Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R et al (2009) Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4(6):568–80

    CAS  PubMed  Google Scholar 

  31. Euhus DM, Hudd C, LaRegina MC, Johnson FE (1986) Tumor measurement in the nude mouse. J Surg Oncol 31(4):229–34

    CAS  PubMed  Google Scholar 

  32. Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA (2010) Multicellular tumor spheroids: An underestimated tool is catching up again. J Biotechnol 148(1):3–15

    CAS  PubMed  Google Scholar 

  33. Tiwary S, Xu L (2016) FRIZZLED7 is required for tumor inititation and metastatic growth of melanoma cells. PLoS ONE 11(1):e0147638

    PubMed  PubMed Central  Google Scholar 

  34. Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P et al (1994) Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78(1):59–66

    CAS  PubMed  Google Scholar 

  35. Lu S, Ren CX, Liu Y, Epner DE (2006) PI3K-Akt signaling is involved in the regulation of p21(WAF/CIP) expression and androgen-independent growth in prostate cancer cells. Int J Oncol 28(1):245–51

    CAS  PubMed  Google Scholar 

  36. Li Y, Dowbenko D, Lasky LA (2002) AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival. J Biol Chem 277(13):11352–61

    CAS  PubMed  Google Scholar 

  37. Prasad SB, Yadav SS, Das M, Modi A, Kumari S, Pandey LK et al (2015) PI3K/AKT pathway-mediated regulation of p27(Kip1) is associated with cell cycle arrest and apoptosis in cervical cancer. Cell Oncol (Dordrecht) 38(3):215–25

    CAS  Google Scholar 

  38. Krakhmal NV, Zavyalova MV, Denisov EV, Vtorushin SV, Perelmuter VM (2015) Cancer invasion: patterns and mechanisms. Acta Nat 7(2):17–28

    CAS  Google Scholar 

  39. Gao CF, Xie Q, Su YL, Koeman J, Khoo SK, Gustafson M et al (2005) Proliferation and invasion: plasticity in tumor cells. Proc Natl Acad Sci USA 102(30):10528–33

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu Y, Zhang X, Wang J, Yang J, Tan WF (2015) JNK is required for maintaining the tumor-initiating cell-like properties of acquired chemoresistant human cancer cells. Acta Pharmacol Sin 36(9):1099–106

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1(5):2315–9

    CAS  PubMed  Google Scholar 

  42. Rajendran V, Jain MV (2018) In vitro tumorigenic assay: colony forming assay for cancer stem cells. Methods Mol Biol 1692:89–95

    CAS  PubMed  Google Scholar 

  43. Wang L, Chen QX, Chen ZB, Tian DF, Xu HT, Cai Q et al (2015) EFEMP2 is upregulated in gliomas and promotes glioma cell proliferation and invasion. Int J Clin Exp Pathol 8(9):10385–93

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gutschner T, Diederichs S (2012) The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 9(6):703–19

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kunter I, Erdal E, Nart D, Yilmaz F, Karademir S, Sagol O et al (2014) Active form of AKT controls cell proliferation and response to apoptosis in hepatocellular carcinoma. Oncol Rep 31(2):573–80

    CAS  PubMed  Google Scholar 

  46. Yu JSL, Cui W (2016) Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 143(17):3050–60

    CAS  PubMed  Google Scholar 

  47. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P et al (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15(23):6541–51

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wan X, Helman LJ (2003) Levels of PTEN protein modulate Akt phosphorylation on serine 473, but not on threonine 308, in IGF-II-overexpressing rhabdomyosarcomas cells. Oncogene 22(50):8205–11

    CAS  PubMed  Google Scholar 

  49. Xiong D, Jin C, Ye X, Qiu B, Jianjun X, Zhu S et al (2018) TRIM44 promotes human esophageal cancer progression via the AKT/mTOR pathway. Cancer Sci 109(10):3080–92

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ahmed M. Hegazy for manuscript modification. This work was supported by the National Natural Science Foundation of China (NSFC, Grant No. 81472862), the Top Talents Program of Yunnan Province China (Grant No. 2012HA014) to Xudong Zhao, Applied Basic Research Projects of Yunnan (Grant No. 2013FA020), the National Key Research and Development Program of China (Grant Nos. 2016YFC0901701, 2017YFC0908402, 2018YFC0910702, 2018YFC0910402), the China Postdoctoral Science Foundation (Project No: 2019M653500, awarded to Xia Zhou).

Author information

Authors and Affiliations

Authors

Contributions

XZ and YY performed most experiments of the work. PM helped in the experiment. NW helped with the lentivirus preparation and in vitro experiments. DY, QT, and BS helped with the paraffin section and immunochemical staining. XZ, TX, ZH and XF designed the experiments and wrote the manuscript.

Corresponding authors

Correspondence to Zongliu Hou or Xiangdong Fang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Yang, Y., Ma, P. et al. TRIM44 is indispensable for glioma cell proliferation and cell cycle progression through AKT/p21/p27 signaling pathway. J Neurooncol 145, 211–222 (2019). https://doi.org/10.1007/s11060-019-03301-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-019-03301-0

Keywords

Navigation