Skip to main content

Advertisement

Log in

LncRNA GAS5 regulates the proliferation, migration, invasion and apoptosis of brain glioma cells through targeting GSTM3 expression. The effect of LncRNA GAS5 on glioma cells

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Introduction

To investigate the effects of lncRNA GAS5 on the proliferation, migration, invasion and apoptosis of brain glioma cells.

Methods

The expression levels of lncRNA GAS5 and GSTM3 in normal glial cells (HEB) and glioma cells (U251 and U87) were detected by RT-qPCR and western blot, respectively. Glioma cells were transfected with ctrl vector, pcDNA-GAS5, siRNA ctrl (siNC) or GSTM3 siRNA and the effects of lncRNA GAS5 and GSTM3 on the proliferation, migration, invasion and apoptosis of glioma cells were detected by CCK-8 assay, transwell assay and Caspase 3/7 activity assay, respectively.

Results

The expression of lncRNA GAS5 was significantly decreased in glioma cell lines U251 and U87 compared with normal glial cells HEB (p < 0.01). In addition, overexpression of lncRNA GAS5 inhibited the proliferation, migration and invasion of U251 and U87 cells, and promoted cell apoptosis as demonstrated by the increased activity of Caspase 3/7. Furthermore, GSTM3 was predicted as a target gene of lncRNA GAS5 by bioinformatics analysis and its expression was increased in glioma cells compared with the normal cells as indicated by western blotting and RT-qPCR experimental results. Silencing of GSTM3 with GSTM3 siRNA decreased the proliferation, migration and invasion but increased the apoptosis of glioma cell lines U251 and U87, which was similar to that the effect lncRNA GAS5 over-expression.

Conclusion

lncRNA GAS5 can effectively inhibit the proliferation, migration and invasion of glioma cells and promote cell apoptosis through targeting GSTM3 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

Abbreviations

siNC:

siRNA ctrl

Lnc:

Long non-coding

GAS5:

Growth-arrest specific transcript 5

GSTM3:

Glutathione-S-transferase M3

BCA:

Bicinchoninic acid

NC:

Nitrocellulose

CCRCC:

Clear cell renal cell carcinoma

References

  1. Jcl A, Talkenberger K, Seifert M, Klink B, Hawkins-Daarud A, Swanson KR, Hatzikirou H, Deutsch A (2017) The biology and mathematical modelling of glioma invasion: a review. J R Soc Interface 14:20170490

    Article  CAS  Google Scholar 

  2. Stupp R, Hegi ME, Mason WP, Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:434–435

    Article  Google Scholar 

  3. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. https://doi.org/10.1056/NEJMoa043330

    Article  CAS  Google Scholar 

  4. Wang Z, Guo Q, Wang R, Xu G, Li P, Sun Y, She X, Liu Q, Chen Q, Yu Z, Liu C, Xiong J, Li G, Wu M (2016) The D Domain of LRRC4 anchors ERK1/2 in the cytoplasm and competitively inhibits MEK/ERK activation in glioma cells. J Hematol Oncol 9:130. https://doi.org/10.1186/s13045-016-0355-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li B, Huang MZ, Wang XQ, Tao BB, Zhong J, Wang XH, Zhang WC, Li ST (2015) TMEM140 is associated with the prognosis of glioma by promoting cell viability and invasion. J Hematol Oncol 8:89. https://doi.org/10.1186/s13045-015-0187-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xiao C, Wu CH, Hu HZ (2016) LncRNA UCA1 promotes epithelial-mesenchymal transition (EMT) of breast cancer cells via enhancing Wnt/beta-catenin signaling pathway. Eur Rev Med Pharmacol Sci 20:2819

    CAS  PubMed  Google Scholar 

  7. Zhou M, Hou Y, Yang G, Zhang H, Tu G, Du YE, Wen S, Xu L, Tang X, Tang S (2016) LncRNA-Hh strengthen cancer stem cells generation in twist-positive breast cancer via activation of hedgehog signaling pathway. Stem Cells 34:55–66

    Article  CAS  PubMed  Google Scholar 

  8. Han P, Li J, Zhang B, Lv J, Li Y, Gu X, Yu Z, Jia Y, Bai X, Li L (2017) The lncRNA CRNDE promotes colorectal cancer cell proliferation and chemoresistance via miR-181a-5p-mediated regulation of Wnt/β-catenin signaling. Mol Cancer 16:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Peng WX, Koirala P, Mo YY (2017) LncRNA-mediated regulation of cell signaling in cancer. Oncogene 36:5661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kanduri C (2016) Long noncoding RNAs: Lessons from genomic imprinting. Biochim Biophys Acta 1859:102–111

    Article  CAS  PubMed  Google Scholar 

  11. Gong C, Popp MW, Maquat LE (2012) Biochemical analysis of long non-coding RNA-containing ribonucleoprotein complexes. Methods 58:88–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15:7–21

    Article  CAS  PubMed  Google Scholar 

  13. Vassallo I, Zinn P, Lai M, Rajakannu P, Hamou MF, Hegi ME (2016) WIF1 re-expression in glioblastoma inhibits migration through attenuation of non-canonical WNT signaling by downregulating the lncRNA MALAT1. Oncogene 35:12–21

    Article  CAS  PubMed  Google Scholar 

  14. Cui Y, Zhang F, Zhu C, Geng L, Tian T, Liu H (2017) Upregulated lncRNA SNHG1 contributes to progression of non-small cell lung cancer through inhibition of miR-101-3p and activation of Wnt/β-catenin signaling pathway. Oncotarget 8:17785–17794

    PubMed  PubMed Central  Google Scholar 

  15. Sun M, Kraus WL (2015) From Discovery to Function: The Expanding Roles of Long Non-Coding RNAs in Physiology and Disease. Endocr Rev 36:25–64

    Article  CAS  PubMed  Google Scholar 

  16. Wang TH, Chan CW, Fang JY, Shih YM, Liu YW, Wang TCV, Chen CY (2017) 2-O-Methylmagnolol upregulates the long non-coding RNA, GAS5, and enhances apoptosis in skin cancer cells. Cell Death Dis 8:e2638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li W, Zhai L, Wang H, Liu C, Zhang J, Chen W, Wei Q (2016) Downregulation of LncRNA GAS5 causes trastuzumab resistance in breast cancer. Oncotarget 7:27778–27786

    PubMed  PubMed Central  Google Scholar 

  18. Wang M, Guo C, Wang L, Luo G, Huang C, Li Y, Liu D, Zeng F, Jiang G, Xiao X (2018) Long noncoding RNA GAS5 promotes bladder cancer cells apoptosis through inhibiting EZH2 transcription. Cell Death Dis 9:238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Renganathan A, Kresoja-Rakic J, Echeverry N, Ziltener G, Vrugt B, Opitz I, Stahel RA, Felley-Bosco E (2014) GAS5 long non-coding RNA in malignant pleural mesothelioma. Mol Cancer 13(1):119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guo C, W-q Song, Sun P, Jin L, H-y Dai (2015) LncRNA-GAS5 induces PTEN expression through inhibiting miR-103 in endometrial cancer cells. J Biomed Sci 22:100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wen Q, Liu Y, Lyu H, Xu X, Wu Q, Liu N, Yin Q, Li J, Sheng X (2017) Long noncoding RNA GAS5, which acts as a tumor suppressor via microRNA 21, regulates cisplatin resistance expression in cervical cancer. Int J Gynecol Cancer 27:1096

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pectasides D, Kamposioras K, Papaxoinis G, Pectasides E (2008) Chemotherapy for recurrent cervical cancer. Cancer Treat Rev 34:603–613

    Article  CAS  PubMed  Google Scholar 

  23. Huang J, Tan PH, Thiyagarajan J, Bay BH (2003) Prognostic significance of glutathione S-transferase-pi in invasive breast cancer. Mod Pathol 16:558

    Article  PubMed  Google Scholar 

  24. Dixon DP, Edwards R (2010) Glutathione Transferases. Annu Rev Pharmacol Toxicol 8:e0131

    Google Scholar 

  25. Meding S, Balluff B, Elsner M, Schöne C, Rauser S, Nitsche U, Maak M, Schäfer A, Hauck SM, Ueffing M (2012) Tissue-based proteomics reveals FXYD3, S100A11 and GSTM3 as novel markers for regional lymph node metastasis in colon cancer. J Pathol 228:459–470

    Article  CAS  PubMed  Google Scholar 

  26. Mitra AP, Pagliarulo V, Yang D, Waldman FM, Datar RH, Skinner DG, Groshen S, Cote RJ (2009) Generation of a concise gene panel for outcome prediction in urinary bladder cancer. J Clin Oncol 27:3929–3937

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ye Z, Song H, Higgins JPT, Pharoah P, Danesh J (2006) Five glutathione S-transferase gene variants in 23,452 cases of lung cancer and 30,397 controls: meta-analysis of 130 studies. Plos Med 3:e91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Medeiros R, Vasconcelos A, Costa S, Pinto D, Ferreira P, Lobo F, Morais A, Oliveira J, Lopes C (2004) Metabolic susceptibility genes and prostate cancer risk in a southern European population: the role of glutathione S-transferases GSTM1, GSTM3, and GSTT1 genetic polymorphisms. Prostate 58:414–420

    Article  CAS  PubMed  Google Scholar 

  29. Checarojas A, Delgadillosilva LF, Velascoherrera M, Andradedomínguez A, Gil J, Santillán O, Lozano L, Toledoleyva A, Ramíreztorres A, Talamasrohana P (2018) GSTM3 and GSTP1: novel players driving tumor progression in cervical cancer. Oncotarget 9:21696–21714

    Google Scholar 

  30. Louie SM, Grossman EA, Crawford LA, Ding L, Camarda R, Huffman TR, Miyamoto DK, Goga A, Weerapana E, Nomura DK (2016) GSTP1 is a driver of triple-negative breast cancer cell metabolism and pathogenicity. Cell Chem Biol 23:567–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu Y, Wang J, Dong W (2014) GSTM3 A/B polymorphism and risk for head and neck cancer: a meta-analysis. PLoS ONE 9:e83851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kumar B, Hovland AR, Prasad JE, Clarkson E, Cole WC, Nahreini P, Freed CR, Prasad KN (2001) Establishment of human embryonic brain cell lines. Vitro Cell Dev Biol Animal 37:259–262

    Article  CAS  Google Scholar 

  33. Nahreini P, Andreatta C, Kumar B, Hanson A, Edwards-Prasad J, Freed CR, Prasad KN (2003) Distinct patterns of gene expression induced by viral oncogenes in human embryonic brain cells. Cell Mol Neurobiol 23:27–42

    Article  CAS  PubMed  Google Scholar 

  34. Sith S, Reardon DA, Annick D, Quinn JA, Vredenburgh JJ, Rich JN (2010) Molecularly targeted therapy for malignant glioma. Cancer 110:13–24

    Google Scholar 

  35. Liu Y, Zhao J, Zhang W, Gan J, Hu C, Huang G, Zhang Y (2015) lncRNA GAS5 enhances G1 cell cycle arrest via binding to YBX1 to regulate p21 expression in stomach cancer. Sci Rep 5:10159

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liang W, Lv T, Shi X, Liu H, Zhu Q, Zeng J, Yang W, Yin J, Song Y (2016) Circulating long noncoding RNA GAS5 is a novel biomarker for the diagnosis of nonsmall cell lung cancer. Medicine 95:e4608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huo JF, Chen XB (2018) Long noncoding RNA growth arrest-specific 5 facilitates glioma cell sensitivity to cisplatin by suppressing excessive autophagy in an mTOR-dependent manner. J Cell Biochem 120:6127–6136

    Article  CAS  PubMed  Google Scholar 

  38. Liu Q, Yu W, Zhu S, Cheng K, Xu H, Lv Y, Long X, Ma L, Huang J, Sun S (2019) Long noncoding RNA GAS5 regulates the proliferation, migration, and invasion of glioma cells by negatively regulating miR-18a-5p. J Cell Physiol 234:757–768

    Article  CAS  Google Scholar 

  39. Zhao X, Liu Y, Zheng J, Liu X, Chen J, Liu L, Wang P, Xue Y (2017) GAS5 suppresses malignancy of human glioma stem cells via a miR-196a-5p/FOXO1 feedback loop. Biochem Biophys Acta 1864:1605–1617

    Article  CAS  Google Scholar 

  40. Checa-Rojas A, Delgadillo-Silva LF, del Castillo Velasco-Herrera M, Andrade-Domínguez A, Gil J, Santillán O, Lozano L, Toledo-Leyva A, Ramírez-Torres A, Talamas-Rohana P (2018) GSTM3 and GSTP1: novel players driving tumor progression in cervical cancer. Oncotarget 9:21696–21714

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang Y, Yang ZY, Chen YH, Li F, Shen H, Yu Y, Huang HY, Shen ZY (2018) A novel functional polymorphism of GSTM3 reduces clear cell renal cell carcinoma risk through enhancing its expression by interfering miR-556 binding. J Cell Mol Med 22:3005–3015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang Y, Hughes KS (2009) Genetic variations in xenobiotic metabolic pathway genes, personal hair dye use, and risk of non-Hodgkin lymphoma. Am J Epidemiol 170:1222–1230

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gabriel E, Yong-Shu Z, Qing-Lin L, Ji-Xiang X, Yuan Y, Qun Z (2014) Long non-coding RNAs in stem cells and cancer. World J Clin Oncol 5:134–141

    Article  Google Scholar 

  44. Man-Tang Q, Jing-Wen H, Rong Y, Lin X (2013) Long noncoding RNA: an emerging paradigm of cancer research. Tumour Biol J Int Soc Oncodev Biol Med 34:613–620

    Article  CAS  Google Scholar 

  45. Yang W, Hong L, Xu X, Wang Q, Huang J, Jiang L (2017) LncRNA GAS5 suppresses the tumorigenesis of cervical cancer by downregulating miR-196a and miR-205. Tumour Biol 39:1010428317711315

    PubMed  Google Scholar 

  46. Guo C, Song WQ, Sun P, Jin L, Dai HY (2015) LncRNA-GAS5 induces PTEN expression through inhibiting miR-103 in endometrial cancer cells. J Biomed Sci 22:100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Geng X, Xu X, Zhao Y, Hu J, Xu J, Jia P, Ding X, Teng J (2018) The effect of long noncoding RNA GAS5 on apoptosis in renal ischemia/reperfusion injury. Nephrology 24:405–413

    Article  CAS  Google Scholar 

  48. Zhao X, Wang P, Liu J, Zheng J, Liu Y, Chen J, Xue Y (2015) Gas5 exerts tumor-suppressive functions in human glioma cells by targeting miR-222. Mol Ther 23:1899–1911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Innovation of Science and Technology Committee of Shenzhen City (Grant Number: JCYJ20150402155418386) and the Projects of Public Welfare Research and Capacity Development of Guangdong Province, China (Grant Number: 2014A020212171).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuanmei Wang or Min Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Cai, Y., Wang, C. et al. LncRNA GAS5 regulates the proliferation, migration, invasion and apoptosis of brain glioma cells through targeting GSTM3 expression. The effect of LncRNA GAS5 on glioma cells. J Neurooncol 143, 525–536 (2019). https://doi.org/10.1007/s11060-019-03185-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-019-03185-0

Keywords

Navigation