Journal of Neuro-Oncology

, Volume 143, Issue 2, pp 207–220 | Cite as

Correlation of the invasive potential of glioblastoma and expression of caveola-forming proteins caveolin-1 and CAVIN1

  • Wenjun Pu
  • Zeyad D. Nassar
  • Samira Khabbazi
  • Nan Xie
  • Kerrie-Ann McMahon
  • Robert G. Parton
  • Gregory J. Riggins
  • Jonathan M. Harris
  • Marie-Odile ParatEmail author
Laboratory Investigation



Glioblastoma (GBM) is the most common primary brain cancer. The average survival time for the majority of patients is approximately 15 months after diagnosis. A major feature of GBM that contributes to its poor prognosis is its high invasiveness. Caveolae are plasma membrane subdomains that participate in numerous biological functions. Caveolin-1 and Caveolae Associated Protein 1 (CAVIN1), formerly termed Polymerase I and Transcript Release Factor, are both necessary for caveola formation. We hypothesized that high expression of caveola-forming proteins in GBM promotes invasiveness via modulation of the production of matrix-degrading enzymes.


The mRNA expression of caveola-forming proteins and matrix proteases in GBM samples, and survival after stratifying patients according to caveolin-1 or CAVIN1 expression, were analyzed from TCGA and REMBRANDT databases. The proteolytic profile of cell lines expressing or devoid of caveola-forming proteins was investigated using zymography and real-time qPCR. Invasion through basement membrane-like protein was investigated in vitro.


Expression of both caveolin-1 and CAVIN1 was increased in GBM compared to normal samples and correlated with expression of urokinase plasminogen activator (uPA) and gelatinases. High expression of caveola-forming proteins was associated with shorter survival time. GBM cell lines capable of forming caveolae expressed more uPA and matrix metalloproteinase-2 (MMP-2) and/or -9 (MMP-9) and were more invasive than GBM cells devoid of caveola-forming proteins. Experimental manipulation of caveolin-1 or CAVIN1 expression in GBM cells recapitulated some, but not all of these features. Caveolae modulate GBM cell invasion in part via matrix protease expression.


MMP2 MMP9 uPA Invasion Caveolae 



This study was funded by the School of Pharmacy, University of Queensland. Zeyad Nassar is currently supported by a National Health and Medical Research Center Early Career Fellowship (1138648).

Compliance with ethical standards

Conflict of interest

All authors declare they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11060_2019_3161_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 14 kb)
11060_2019_3161_MOESM2_ESM.pdf (28.1 mb)
Supplementary material 2 (PDF 28758 kb)


  1. 1.
    Kovtun O, Tillu VA, Ariotti N, Parton RG, Collins BM (2015) Cavin family proteins and the assembly of caveolae. J Cell Sci 128(7):1269–1278. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Parton RG, Collins BM (2016) Unraveling the architecture of caveolae. Proc Natl Acad Sci USA 113(50):14170–14172. CrossRefPubMedGoogle Scholar
  3. 3.
    Parat MO, Riggins GJ (2012) Caveolin-1, caveolae, and glioblastoma. Neuro Oncol 14(6):679–688CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Nassar ZD, Hill MM, Parton RG, Francois M, Parat MO (2015) Non-caveolar caveolin-1 expression in prostate cancer cells promotes lymphangiogenesis. Oncoscience 2(7):635–645. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gamez-Pozo A, Sanchez-Navarro I, Calvo E, Gullo-Ortuno MT, Lopez-Vacas R, Diaz E, Camafeita E, Nistal M, Madero R, Espinosa E, Lopez JA, Fresno Vara JA (2012) PTRF/cavin-1 and MIF proteins are identified as non-small cell lung cancer biomarkers by label-free proteomics. PLoS ONE 7(3):e33752CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Liu L, Xu HX, Wang WQ, Wu CT, Chen T, Qin Y, Liu C, Xu J, Long J, Zhang B, Xu YF, Ni QX, Li M, Yu XJ (2013) Cavin-1 is essential for the tumor-promoting effect of caveolin-1 and enhances its prognostic potency in pancreatic cancer. Oncogene 33:2728–2736CrossRefPubMedGoogle Scholar
  7. 7.
    Allen WL, Stevenson L, Coyle VM, Jithesh PV, Proutski I, Carson G, Gordon MA, Lenz HJ, Van Schaeybroeck S, Longley DB, Johnston PG (2012) A systems biology approach identifies SART1 as a novel determinant of both 5-fluorouracil and SN38 drug resistance in colorectal cancer. Mol Cancer Ther 11(1):119–131CrossRefPubMedGoogle Scholar
  8. 8.
    Yi J-S, Mun D-G, Lee H, J-s Park, Lee J-W, Lee J-S, Kim S-J, Cho B-R, Lee S-W, Ko Y-G (2013) PTRF/cavin-1 is essential for multidrug resistance in cancer cells. J Proteome Res 12(2):605–614. CrossRefPubMedGoogle Scholar
  9. 9.
    Wang X, Liu T, Bai Y, Liao H, Qiu S, Chang Z, Liu Y, Yan X, Guo H (2014) Polymerase I and transcript release factor acts as an essential modulator of glioblastoma chemoresistance. PLoS ONE 9(4):e93439. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bai L, Deng X, Li Q, Wang M, An W, Gao Z, Xie Y, Dai Y, Cong YS (2012) Down-regulation of the cavin family proteins in breast cancer. J Cell Biochem 113(1):322–328CrossRefPubMedGoogle Scholar
  11. 11.
    Gould ML, Williams G, Nicholson HD (2010) Changes in caveolae, caveolin, and polymerase 1 and transcript release factor (PTRF) expression in prostate cancer progression. Prostate 70(15):1609–1621CrossRefPubMedGoogle Scholar
  12. 12.
    Aung CS, Hill MM, Bastiani M, Parton RG, Parat MO (2010) PTRF-cavin-1 expression decreases the migration of PC3 prostate cancer cells: role of matrix metalloprotease 9. Eur J Cell Biol 90:136–142CrossRefPubMedGoogle Scholar
  13. 13.
    Moon H, Lee CS, Inder KL, Sharma S, Choi E, Black DM, Lê Cao K, Winterford C, Coward J, Ling MT, BioResource tAPC, Craik D, Parton RG, Russel P, Hill MM (2014) PTRF/cavin-1 neutralizes non-caveolar caveolin-1 microdomains in prostate cancer. Oncogene 33(27):3561–3570CrossRefPubMedGoogle Scholar
  14. 14.
    Nassar ZD, Hill MM, Parton RG, Parat MO (2013) Caveola-forming proteins caveolin-1 and PTRF in prostate cancer. Nat Rev Urol 10(9):529–536CrossRefPubMedGoogle Scholar
  15. 15.
    Nassar ZD, Moon H, Duong T, Neo L, Hill MM, Francois M, Patron RG, Parat MO (2013) PTRF/Cavin-1 decreases prostate cancer angiogenesis and lymphangiogenesis. Oncotarget 4(10):1844–1855CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Inder KL, Ruelcke JE, Petelin L, Moon H, Choi E, Rae J, Blumenthal A, Hutmacher D, Saunders NA, Stow JL, Parton RG, Hill MM (2014) CAVIN1 alters prostate cancer cell-derived extracellular vesicle content and internalization to attenuate extracellular vesicle-mediated osteoclastogenesis and osteoblast proliferation. J Extracell Vesicles. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Meng F, Joshi B, Nabi IR (2015) Galectin-3 overrides PTRF/cavin-1 reduction of PC3 prostate cancer cell migration. PLoS ONE 10(5):e0126056. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Huertas-Martínez J, Court F, Rello-Varona S, Herrero-Martín D, Almacellas-Rabaiget O, Sáinz-Jaspeado M, Garcia-Monclús S, Lagares-Tena L, Buj R, Hontecillas-Prieto L, Sastre A, Azorin D, Sanjuan X, López-Alemany R, Moran S, Roma J, Gallego S, Mora J, García del Muro X, Giangrande PH, Peinado MA, Alonso J, de Alava E, Monk D, Esteller M, Tirado OM (2017) DNA methylation profiling identifies PTRF/Cavin-1 as a novel tumor suppressor in Ewing sarcoma when co-expressed with caveolin-1. Cancer Lett 386:196–207. CrossRefPubMedGoogle Scholar
  19. 19.
    Wang W, Zhao Z, Wu F, Wang H, Wang J, Lan Q, Zhao J (2018) Bioinformatic analysis of gene expression and methylation regulation in glioblastoma. J Neurooncol 136(3):495–503. CrossRefPubMedGoogle Scholar
  20. 20.
    Huang K, Fang C, Yi K, Liu X, Qi H, Tan Y, Zhou J, Li Y, Liu M, Zhang Y, Yang J, Zhang J, Li M, Kang C (2018) The role of PTRF/cavin1 as a biomarker in both glioma and serum exosomes. Theranostics 8(6):1540–1557. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Guo Q, Guan G-F, Cheng W, Zou C-Y, Zhu C, Cheng P, Wu A-H (2019) Integrated profiling identifies caveolae-associated protein 1 as a prognostic biomarker of malignancy in glioblastoma patients. CNS Neurosci Ther 25:343–354. CrossRefPubMedGoogle Scholar
  22. 22.
    Dolgin E (2016) Venerable brain-cancer cell line faces identity crisis. Nature 537(7619):149–150. CrossRefPubMedGoogle Scholar
  23. 23.
    Afsharimani B, Baran J, Watanabe S, Lindner D, Cabot P, Parat MO (2014) Morphine and breast tumor metastasis: the role of matrix-degrading enzymes. Clin Exp Metastasis 31(2):149–158CrossRefPubMedGoogle Scholar
  24. 24.
    Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108CrossRefGoogle Scholar
  25. 25.
    Khabbazi S, Goumon Y, Parat MO (2015) Morphine modulates interleukin-4- or breast cancer cell-induced pro-metastatic activation of macrophages. Scientific Reports 5:11389CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hill MM, Bastiani M, Luetterforst R, Kirkham M, Kirkham A, Nixon SJ, Walser P, Abankwa D, Oorschot VMJ, Martin S, Hancock JF, Parton RG (2008) PTRF-cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 132(1):113–124CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bindal AK, Hammoud M, Shi WM, Wu SZ, Sawaya R, Rao JS (1994) Prognostic significance of proteolytic enzymes in human brain tumors. J Neurooncol 22(2):101–110CrossRefPubMedGoogle Scholar
  28. 28.
    Li Q, Chen B, Cai J, Sun Y, Wang G, Li Y, Li R, Feng Y, Han B, Li J, Tian Y, Yi L, Jiang C (2016) Comparative analysis of matrix metalloproteinase family members reveals that MMP9 predicts survival and response to temozolomide in patients with primary glioblastoma. PLoS ONE 11(3):e0151815. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Cavallo-Medved D, Mai J, Dosescu J, Sameni M, Sloane BF (2005) Caveolin-1 mediates the expression and localization of cathepsin B, pro-urokinase plasminogen activator and their cell-surface receptors in human colorectal carcinoma cells. J Cell Sci 118(7):1493–1503CrossRefPubMedGoogle Scholar
  30. 30.
    Han F, Zhu HG (2010) Caveolin-1 regulating the invasion and expression of matrix metalloproteinase (MMPs) in pancreatic carcinoma cells. J Surg Res 159(1):443–450CrossRefPubMedGoogle Scholar
  31. 31.
    Han F, Zhang J, Shao J, Yi X (2014) Caveolin-1 promotes an invasive phenotype and predicts poor prognosis in large cell lung carcinoma. Pathology 210(8):514–520. CrossRefGoogle Scholar
  32. 32.
    Sáinz-Jaspeado M, Lagares-Tena L, Lasheras J, Navid F, Rodriguez-Galindo C, Mateo-Lozano S, Notario V, Sanjuan X, Garcia del Muro X, Fabra À, Tirado OM (2010) Caveolin-1 modulates the ability of Ewing’s sarcoma to metastasize. Mol Cancer Res 8(11):1489–1500. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cassoni P, Senetta R, Castellano I, Ortolan E, Bosco M, Magnani I, Ducati A (2007) Caveolin-1 expression is variably displayed in astroglial-derived tumors and absent in oligodendrogliomas: concrete premises for a new reliable diagnostic marker in gliomas. Am J Surg Pathol 31(5):760–769CrossRefPubMedGoogle Scholar
  34. 34.
    Sallinen SL, Sallinen PK, Haapasalo HK, Helin HJ, Helen PT, Schraml P, Kallioniemi OP, Kononen J (2000) Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer Res 60(23):6617–6622PubMedGoogle Scholar
  35. 35.
    Abulrob A, Giuseppin S, Andrade MF, McDermid A, Moreno M, Stanimirovic D (2004) Interactions of EGFR and caveolin-1 in human glioblastoma cells: evidence that tyrosine phosphorylation regulates EGFR association with caveolae. Oncogene 23(41):6967–6979CrossRefPubMedGoogle Scholar
  36. 36.
    Cameron PL, Liu C, Smart DK, Hantus ST, Fick JR, Cameron RS (2002) Caveolin-1 expression is maintained in rat and human astroglioma cell lines. Glia 37(3):275–290CrossRefPubMedGoogle Scholar
  37. 37.
    Tang Y, Zeng X, He F, Liao Y, Qian N, Toi M (2012) Caveolin-1 is related to invasion, survival, and poor prognosis in hepatocellular cancer. Med Oncol 29(2):977–984. CrossRefPubMedGoogle Scholar
  38. 38.
    Cokakli M, Erdal E, Nart D, Yilmaz F, Sagol O, Kilic M, Karademir S, Atabey N (2009) Differential expression of Caveolin-1 in hepatocellular carcinoma: correlation with differentiation state, motility and invasion. BMC Cancer 9(1):65. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Tse EYT, Ko FCF, Tung EKK, Chan LK, Lee TKW, Ngan ESW, Man K, Wong AST, Ng IOL, Yam JWP (2012) Caveolin-1 overexpression is associated with hepatocellular carcinoma tumourigenesis and metastasis. J Pathol 226(4):645–653. CrossRefPubMedGoogle Scholar
  40. 40.
    Yu H, Shen H, Zhang Y, Zhong F, Liu Y, Qin L, Yang P (2014) CAV1 promotes HCC cell progression and metastasis through Wnt/β-catenin pathway. PLoS ONE 9(9):e106451. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Han F, Zhang L, Zhou Y, Yi X (2015) Caveolin-1 regulates cell apoptosis and invasion ability in paclitaxel-induced multidrug-resistant A549 lung cancer cells. Int J Clin Exp Pathol 8(8):8937–8947PubMedPubMedCentralGoogle Scholar
  42. 42.
    Yamaguchi H, Takeo Y, Yoshida S, Kouchi Z, Nakamura Y, Fukami K (2009) Lipid rafts and caveolin-1 are required for invadopodia formation and extracellular matrix degradation by human breast cancer cells. Can Res 69(22):8594–8602CrossRefGoogle Scholar
  43. 43.
    Celus W, Di Conza G, Oliveira A, Ehling M, Costa BM, Wenes M, Mazzone M (2017) Loss of caveolin-1 in metastasis-associated macrophages drives lung metastatic growth through increased angiogenesis. Cell Rep 21(10):2842–2854. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Williams TM, Medina F, Badano I, Hazan RB, Hutchinson J, Muller WJ, Chopra NG, Scherer PE, Pestell RG, Lisanti MP (2004) Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo Role of Cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion. J Biol Chem 279(49):51630–51646CrossRefPubMedGoogle Scholar
  45. 45.
    Poincloux R, Lizarraga F, Chavrier P (2009) Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia. J Cell Sci 122(17):3015–3024CrossRefPubMedGoogle Scholar
  46. 46.
    Salamone M, Carfì Pavia F, Ghersi G (2016) Proteolytic enzymes clustered in specialized plasma-membrane domains drive endothelial cells’ migration. PLoS ONE 11(5):e0154709. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kiyan J, Smith G, Haller H, Dumler I (2009) Urokinase-receptor-mediated phenotypic changes in vascular smooth muscle cells require the involvement of membrane rafts. Biochem J 423(3):343–351. CrossRefPubMedGoogle Scholar
  48. 48.
    Chapman HA, Wei Y, Simon DI, Waltz DA (1999) Role of urokinase receptor and caveolin in regulation of integrin signaling. Thromb Haemost 82(2):291–297PubMedGoogle Scholar
  49. 49.
    Monaghan-Benson E, Mastick CC, Keown-Longo PJ (2008) A dual role for caveolin-1 in the regulation of fibronectin matrix assembly by uPAR. J Cell Sci 121(22):3693–3703CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Parat MO, Fox PL (2001) Palmitoylation of caveolin-1 in endothelial cells is post-translational but irreversible. J Biol Chem 276:15776–15782CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.PACEUniversity of Queensland School of PharmacyWoolloongabbaAustralia
  2. 2.School of Medicine and Freemasons Foundation Centre for Men’s Health, South Australian Health and Medical Research InstituteUniversity of AdelaideAdelaideAustralia
  3. 3.Institute for Molecular BioscienceThe University of QueenslandBrisbaneAustralia
  4. 4.Department of NeurosurgeryJohns Hopkins University School of MedicineBaltimoreUSA
  5. 5.Institute of Health Biomedical InnovationQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations