Skip to main content

Advertisement

Log in

A novel antisense oligonucleotide anchored on the intronic splicing enhancer of hTERT pre-mRNA inhibits telomerase activity and induces apoptosis in glioma cells

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Introduction

Alternative splicing of hTERT pre-mRNA is an important step in the regulation of telomerase activity, but the regulation mechanisms and functions remain unclear.

Methods

RT-PCR analysis was used to detect hTERT splicing in glioma cell lines and brain tissues. TRAP assay was used to detect the telomerase activity. Then, we designed and synthesized 2′-O-methyl-RNA phosphorothioate AONs and transfected them into glioma cells to detect the changes in telomerase activity. MTT assay, plate colony formation assay, western blotting and Annexin V/PI assay were used to detect cell proliferation and apoptosis. At last, bioinformatics analyses were used to predict the expression and function of splicing protein SRSF2 in gliomas.

Results

hTERT splicing occurs both in glioma cell lines and glioma patients’ tissues. The telomerase activity was related to the expression level of the full-length hTERT, rather than the total hTERT transcript level. AON-Ex726 was complementary to the sequence of the intronic splicing enhancer (ISE) in intron six, and significantly altered the splicing pattern of hTERT pre-mRNA, reducing the expression level of the full-length hTERT mRNA and increasing the expression level of the -β hTERT mRNA. After transfection with AON-Ex726, the level of apoptosis was increased, while telomerase activity and cell proliferation were significantly decreased. By bioinformatic predictions, we found the AON-Ex726 anchoring sequence in ISE overlaps the binding site of SRSF2 protein, which is up-regulated during the development of gliomas.

Conclusions

Our findings provided new targets and important clues for the gene therapy of gliomas by regulating the alternative splicing pattern of hTERT pre-mRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jiang J, Wang Y, Sušac L et al (2018) Structure of telomerase with telomeric DNA. Cell 173(5):1179–1190. https://doi.org/10.1016/j.cell.2018.04.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhao Y, Sfeir AJ, Zou Y et al (2009) Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells. Cell 138(3):463–475. https://doi.org/10.1016/j.cell.2009.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen L, Roake CM, Freund A et al (2018) An activity switch in human telomerase based on rna conformation and shaped by TCAB1. Cell 174(1):218–230. https://doi.org/10.1016/j.cell.2018.04.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Blackburn EH, Epel ES, Lin J (2015) Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 350(6265):1193–1198. https://doi.org/10.1126/science.aab3389

    Article  CAS  PubMed  Google Scholar 

  5. Nguyen THD, Tam J, Wu RA, Greber BJ, Toso D, Nogales E, Collins K (2018) Cryo-EM structure of substrate-bound human telomerase holoenzyme. Nature 557(7704):190–195. https://doi.org/10.1038/s41586-018-0062-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arndt GM, MacKenzie KL (2016) New prospects for targeting telomerase beyond the telomere. Nat Rev Cancer 16(8):508–524. https://doi.org/10.1038/nrc.2016.55

    Article  CAS  PubMed  Google Scholar 

  7. Wang Z, Xu J, Geng X, Zhang W (2010) Analysis of DNA methylation status of the promoter of human telomerase reverse transcriptase in gastric carcinogenesis. Arch Med Res 41(1):1–6. https://doi.org/10.1016/j.arcmed.2009.11.001

    Article  CAS  Google Scholar 

  8. Tang H, Wang H, Cheng X et al (2018) HuR regulates telomerase activity through TERC methylation. Nat Commun 9(1):2213. https://doi.org/10.1038/s41467-018-04617-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Borah S, Xi L, Zaug AJ et al (2015) Cancer. TERT promoter mutations and telomerase reactivation in urothelial cancer. Science 347(6225):1006–1010. https://doi.org/10.1126/science.1260200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bell RJ, Rube HT, Kreig A et al (2015) Cancer. The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer. Science 348(6238):1036–1039. https://doi.org/10.1126/science.aab0015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harley CB (2008) Telomerase and cancer therapeutics. Nat Rev Cancer 8(3):167–179. https://doi.org/10.1038/nrc2275

    Article  CAS  PubMed  Google Scholar 

  12. Min J, Wright WE, Shay JW (2017) Alternative lengthening of telomeres can be maintained by preferential elongation of lagging strands. Nucleic Acids Res 45(5):2615–2628. https://doi.org/10.1093/nar/gkw1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baralle FE, Giudice J (2017) Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol 18(7):437–451. https://doi.org/10.1038/nrm.2017.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Galarza-Muñoz G, Briggs FBS, Evsyukova I et al (2017) Human epistatic interaction controls IL7R splicing and increases multiple sclerosis risk. Cell 169(1):72–84. https://doi.org/10.1016/j.cell.2017.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim W, Ludlow AT, Min J et al (2016) Regulation of the human telomerase gene TERT by telomere position effect-over long distances (TPE-OLD): implications for aging and cancer. PLoS Biol 14(12):e2000016. https://doi.org/10.1371/journal.pbio.2000016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yi X, Shay JW, Wright WE (2001) Quantitation of telomerase components and hTERT mRNA splicing patterns in immortal human cells. Nucleic Acids Res 29(23):4818–4825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wong MS, Shay JW, Wright WE (2014) Regulation of human telomerase splicing by RNA: RNA pairing. Nat Commun 5:3306. https://doi.org/10.1038/ncomms4306

    Article  CAS  PubMed  Google Scholar 

  18. Hisatomi H, Ohyashiki K, Ohyashiki JH, Nagao K, Kanamaru T, Hirata H, Hibi N, Tsukada Y (2003) Expression profile of a gamma-deletion variant of the human telomerase reverse transcriptase gene. Neoplasia 5(3):193–197. https://doi.org/10.1016/S1476-5586(03)80051-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11(2):125–140. https://doi.org/10.1038/nrd3625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han G, Gu B, Cao L et al (2016) Hexose enhances oligonucleotide delivery and exon skipping in dystrophin-deficient mdx mice. Nat Commun 7:10981. https://doi.org/10.1038/ncomms10981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Inoue A, Yamamoto N, Kimura M, Nishio K, Yamane H, Nakajima K (2014) RBM10 regulates alternative splicing. FEBS Lett 588(6):942–947. https://doi.org/10.1016/j.febslet.2014.01.052

    Article  CAS  PubMed  Google Scholar 

  22. Schnerwitzki D, Perner B, Hoppe B et al (2014) Alternative splicing of Wilms tumor suppressor 1 (Wt1) exon 4 results in protein isoforms with different functions. Dev Biol 393(1):24–32. https://doi.org/10.1016/j.ydbio.2014.06.026

    Article  CAS  PubMed  Google Scholar 

  23. Palhais B, Præstegaard VS, Sabaratnam R, Doktor TK, Lutz S, Burda P, Suormala T, Baumgartner M, Fowler B, Bruun GH, Andersen HS, Kožich V, Andresen BS (2015) Splice-shifting oligonucleotide (SSO) mediated blocking of an exonic splicing enhancer (ESE) created by the prevalent c.903 + 469T> C MTRR mutation corrects splicing and restores enzyme activity in patient cells. Nucleic Acids Res 43(9):4627–4639. https://doi.org/10.1093/nar/gkv275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Smith LD, Leme de Calais F, Raponi M et al (2017) Novel splice-switching oligonucleotide promotes BRCA1 aberrant splicing and susceptibility to PARP inhibitor action. Int J Cancer 140(7):1564–1570. https://doi.org/10.1002/ijc.30574

    Article  CAS  PubMed  Google Scholar 

  25. Bauman JA, Li SD, Yang A, Huang L, Kole R (2010) Anti-tumor activity of splice-switching oligonucleotides. Nucleic Acids Res 38(22):8348–8356. https://doi.org/10.1093/nar/gkq731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu J, Bhadra M, Sinnakannu JR et al (2017) Overcoming imatinib resistance conferred by the BIM deletion polymorphism in chronic myeloidleukemia with splice-switching antisense oligonucleotides. Oncotarget 8(44):77567–77585. https://doi.org/10.18632/oncotarget.20658

    Article  PubMed  PubMed Central  Google Scholar 

  27. Muntoni F, Wood MJ (2011) Targeting RNA to treat neuromuscular disease. Nat Rev Drug Discov 10(8):621–637. https://doi.org/10.1038/nrd3459

    Article  CAS  PubMed  Google Scholar 

  28. Venkatesh HS, Tam LT, Woo PJ et al (2017) Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature 549(7673):533–537. https://doi.org/10.1038/nature24014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xue J, Zhao Z, Zhang L et al (2017) Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant gliomarecurrence. Nat Nanotechnol 12(7):692–700. https://doi.org/10.1038/nnano.2017.54

    Article  CAS  PubMed  Google Scholar 

  30. Li G, Shen J, Cao J et al (2018) Alternative splicing of human telomerase reverse transcriptase in gliomas and its modulation mediated by CX-5461. J Exp Clin Cancer Res 37(1):78. https://doi.org/10.1186/s13046-018-0749-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Herbert BS, Hochreiter AE, Wright WE, Shay JW (2006) Nonradioactive detection of telomerase activity using the telomeric repeat amplification protocol. Nat Protoc 1(3):1583–1590

    Article  CAS  PubMed  Google Scholar 

  32. Liu X, Wang Y, Chang G, Wang F, Wang F, Geng X. Alternative Splicing of hTERT Pre-mRNA: a potential strategy for the regulation of telomerase activity. Int J Mol Sci. 2017 18(3):pii E567. https://doi.org/10.3390/ijms18030567

  33. Aldape K, Zadeh G, Mansouri S, Reifenberger G, von Deimling A (2015) Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129(6):829–848. https://doi.org/10.1007/s00401-015-1432-1

    Article  CAS  PubMed  Google Scholar 

  34. Jung H, Lee D, Lee J et al (2015) Intron retention is a widespread mechanism of tumor-suppressor inactivation. Nat Genet 47(11):1242–1248. https://doi.org/10.1038/ng.3414

    Article  CAS  PubMed  Google Scholar 

  35. Bertaux-Skeirik N, Wunderlich M, Teal E et al (2017) CD44 variant isoform 9 emerges in response to injury and contributes to the regeneration of the gastric epithelium. J Pathol 242(4):463–475. https://doi.org/10.1002/path.4918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bickmore WA, Oghene K, Little MH, Seawright A, van Heyningen V, Hastie ND (1992) Modulation of DNA binding specificity by alternative splicing of the Wilms tumor wt1 gene transcript. Science 257(5067):235–237

    Article  CAS  PubMed  Google Scholar 

  37. Lee MT, Ho SM, Tarapore P, Chung I, Leung YK (2013) Estrogen receptor β isoform 5 confers sensitivity of breast cancer cell lines to chemotherapeutic agent-induced apoptosis through interaction with Bcl2L12. Neoplasia 15(11):1262–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Romero A, García-García F, López-Perolio I et al (2015) BRCA1 Alternative splicing landscape in breast tissue samples. BMC Cancer 15:219. https://doi.org/10.1186/s12885-015-1145-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sharma S, Lichtenstein A (2009) Aberrant splicing of the E-cadherin transcript is a novel mechanism of gene silencing in chronic lymphocytic leukemia cells. Blood 114(19):4179–4185. https://doi.org/10.1182/blood-2009-03-206482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shultz JC, Goehe RW, Wijesinghe DS et al (2010) Alternative splicing of caspase 9 is modulated by the phosphoinositide 3-kinase/Akt pathway via phosphorylation of SRp30a. Cancer Res 70(22):9185–9196. https://doi.org/10.1158/0008-5472.CAN-10-1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yi X, White DM, Aisner DL, Baur JA, Wright WE, Shay JW (2000) An alternate splicing variant of the human telomerase catalytic subunit inhibits telomeraseactivity. Neoplasia 2(5):433–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Colgin LM, Wilkinson C, Englezou A, Kilian A, Robinson MO, Reddel RR (2000) The hTERTalpha splice variant is a dominant negative inhibitor of telomerase activity. Neoplasia 2(5):426–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu JH, Wang YC, Geng X, Li YY, Zhang WM (2009) Changes of the alternative splicing variants of human telomerase reverse transcriptase during gastric carcinogenesis. Pathobiology 76(1):23–29. https://doi.org/10.1159/000178152

    Article  CAS  PubMed  Google Scholar 

  44. Robin V, Griffith G, Carter JL, Leumann CJ, Garcia L, Goyenvalle A (2017) Efficient SMN rescue following subcutaneous tricyclo-DNA antisense oligonucleotide treatment. Mol Ther Nucleic Acids 7:81–89. https://doi.org/10.1016/j.omtn.2017.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brambilla C, Folini M, Gandellini P, Daprai L, Daidone MG, Zaffaroni N (2004) Oligomer-mediated modulation of hTERT alternative splicing induces telomerase inhibition and cell growth decline in human prostate cancer cells. Cell Mol Life Sci 61(14):1764–1774

    Article  CAS  PubMed  Google Scholar 

  46. Sharma S, Liao W, Zhou X, Wong DT, Lichtenstein A (2011) Exon 11 skipping of E-cadherin RNA downregulates its expression in head and neck cancer cells. Mol Cancer Ther 10(9):1751–1759. https://doi.org/10.1158/1535-7163.MCT-11-0248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cheng Y, Luo C, Wu W, Xie Z, Fu X, Feng Y (2016) Liver-specific deletion of srsf2 caused acute liver failure and early death in mice. Mol Cell Biol 36(11):1628–1638. https://doi.org/10.1128/MCB.01071-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Luo C, Cheng Y, Liu Y et al (2017) SRSF2 regulates alternative splicing to drive hepatocellular carcinoma development. Cancer Res 77(5):1168–1178. https://doi.org/10.1158/0008-5472.CAN-16-1919

    Article  CAS  PubMed  Google Scholar 

  49. Listerman I, Sun J, Gazzaniga FS, Lukas JL, Blackburn EH (2013) The major reverse transcriptase-incompetent splice variant of the human telomerase protein inhibits telomerase activity but protects from apoptosis. Cancer Res 73(9):2817–2828. https://doi.org/10.1158/0008-5472.CAN-12-3082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ludlow AT, Wong MS, Robin JD et al (2018) NOVA1 regulates hTERT splicing and cell growth in non-small cell lung cancer. Nat Commun 9(1):3112. https://doi.org/10.1038/s41467-018-05582-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Chinese National Natural Science Foundation (Grant Nos. 81671054, 81771135, 91649102, 31771520).

Author information

Authors and Affiliations

Authors

Contributions

XG, FW: Conception and design, FW, XG, YC, CZ, GC: Development of methodology, FW,YC, CZ GC: Analysis and interpretation of data, FW, YC, CZ, XG: Writing, review and revision of the manuscript.

Corresponding author

Correspondence to Xin Geng.

Ethics declarations

Conflict of interest

All authors declared that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6123 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Cheng, Y., Zhang, C. et al. A novel antisense oligonucleotide anchored on the intronic splicing enhancer of hTERT pre-mRNA inhibits telomerase activity and induces apoptosis in glioma cells. J Neurooncol 143, 57–68 (2019). https://doi.org/10.1007/s11060-019-03150-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-019-03150-x

Keywords

Navigation