Skip to main content

Advertisement

Log in

miR-1268a regulates ABCC1 expression to mediate temozolomide resistance in glioblastoma

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Introduction

Temozolomide (TMZ) is the preferred chemotherapeutic drug approved for the Glioblastoma multiforme (GBM) treatment. However, resistance to TMZ is the most intractable challenge for treatment of GBM. Screening of miRNAs is becoming a novel strategy to reveal underlying mechanism of drug-resistance of human tumors.

Materials and methods

We conducted RNA sequencing (RNA-seq) for GBM cells treated continuously with TMZ 1 or 2 week or not. Bioinformatic analysis was used to predict targets of these altered miRNAs. Subsequently, we studied the potential role of miR-1268a in TMZ-resistance of GBM cells.

Results

Expression levels of 55 miRNAs were identified altering both after 1 and 2 weeks TMZ treatment. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to illuminate the biological implication and related pathways of predicted target genes. We showed that miR-1268a was downregulated after TMZ treatment and targeted ABCC1/MRP1, a membrane transporter contributing to drug resistance, using dual-luciferase assay. Furthermore, we confirmed overexpression of miR-1268a inhibited protein translation of ABCC1 and restored upregulated expression of ABCC1 due to TMZ. Inversely, knockdown of miR-1268a increased ABCC1 at protein level and enhanced upregulation of ABCC1 with TMZ treatment. In addition, our data indicated that miR-1268a enhanced TMZ sensitivity in GBM cells.

Conclusion

Through RNA-seq analysis, we discovered miR-1268a and elucidated its role in modulating TMZ-resistance of GBM cells by targeting ABCC1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cloughesy TF, Cavenee WK, Mischel PS (2014) Glioblastoma: from molecular pathology to targeted treatment. Annu Rev Pathol 9:1–25. https://doi.org/10.1146/annurev-pathol-011110-130324

    Article  PubMed  CAS  Google Scholar 

  2. Wen PY, Reardon DA (2016) Neuro-oncology in 2015: progress in glioma diagnosis, classification and treatment. Nat Rev Neurol 12(2):69–70. https://doi.org/10.1038/nrneurol.2015.242

    Article  PubMed  CAS  Google Scholar 

  3. Messaoudi K, Clavreul A, Lagarce F (2015) Toward an effective strategy in glioblastoma treatment. Part I: resistance mechanisms and strategies to overcome resistance of glioblastoma to temozolomide. Drug Discov Today 20(7):899–905. https://doi.org/10.1016/j.drudis.2015.02.011

    Article  PubMed  CAS  Google Scholar 

  4. Messaoudi K, Clavreul A, Lagarce F (2015) Toward an effective strategy in glioblastoma treatment. Part II: RNA interference as a promising way to sensitize glioblastomas to temozolomide. Drug Discov Today 20(6):772–779. https://doi.org/10.1016/j.drudis.2015.02.014

    Article  PubMed  CAS  Google Scholar 

  5. Hammond SM (2015) An overview of microRNAs. Adv Drug Deliv Rev 87:3–14. https://doi.org/10.1016/j.addr.2015.05.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ling H, Fabbri M, Calin GA (2013) MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 12(11):847–865. https://doi.org/10.1038/nrd4140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Wang H, Feng W, Lu Y, Li H, Xiang W, Chen Z, He M, Zhao L, Sun X, Lei B, Qi S, Liu Y (2016) Expression of dynein, cytoplasmic 2, heavy chain 1 (DHC2) associated with glioblastoma cell resistance to temozolomide. Sci Rep 6:28948. https://doi.org/10.1038/srep28948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Cole SP (2014) Targeting multidrug resistance protein 1 (MRP1, ABCC1): past, present, and future. Annu Rev Pharmacol Toxicol 54:95–117. https://doi.org/10.1146/annurev-pharmtox-011613-135959

    Article  PubMed  CAS  Google Scholar 

  9. Greaves W, Xiao L, Sanchez-Espiridion B, Kunkalla K, Dave KS, Liang CS, Singh RR, Younes A, Medeiros LJ, Vega F (2012) Detection of ABCC1 expression in classical Hodgkin lymphoma is associated with increased risk of treatment failure using standard chemotherapy protocols. J Hematol Oncol 5:47. https://doi.org/10.1186/1756-8722-5-47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Tivnan A, Zakaria Z, O’Leary CN, Gel K, Pokorny D, Sarkaria JL, Prehn JN JHM (2015) Inhibition of multidrug resistance protein 1 (MRP1) improves chemotherapy drug response in primary and recurrent glioblastoma multiforme. Front Neurosci. https://doi.org/10.3389/fnins.2015.00218

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liu H, Wu X, Huang J, Peng J, Guo L (2015) miR-7 modulates chemoresistance of small cell lung cancer by repressing MRP1/ABCC1. Int J Exp Pathol 96(4):240–247. https://doi.org/10.1111/iep.12131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Liang Z, Wu H, Xia J, Li Y, Zhang Y, Huang K, Wagar N, Yoon Y, Cho HT, Scala S, Shim H (2010) Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem Pharmacol 79(6):817–824. https://doi.org/10.1016/j.bcp.2009.10.017

    Article  PubMed  CAS  Google Scholar 

  13. Lu L, Ju F, Zhao H, Ma X (2015) MicroRNA-134 modulates resistance to doxorubicin in human breast cancer cells by downregulating ABCC1. Biotechnol Lett 37(12):2387–2394. https://doi.org/10.1007/s10529-015-1941-y

    Article  PubMed  CAS  Google Scholar 

  14. Pan YZ, Zhou A, Hu Z, Yu AM (2013) Small nucleolar RNA-derived microRNA hsa-miR-1291 modulates cellular drug disposition through direct targeting of ABC transporter ABCC1. Drug Metab Dispos 41(10):1744–1751. https://doi.org/10.1124/dmd.113.052092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Morin RD, O’Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, Zhao Y, McDonald H, Zeng T, Hirst M, Eaves CJ, Marra MA (2008) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18(4):610–621. https://doi.org/10.1101/gr.7179508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Lu Y, Yao J, Huang X, Wang C, Wu X, Xia Q, Long X (2016) Prognostic significance of miR-1268a expression and its beneficial effects for post-operative adjuvant transarterial chemoembolization in hepatocellular carcinoma. Sci Rep. https://doi.org/10.1038/srep36104

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xu K, Shen K, Liang X, Li Y, Nagao N, Li J, Liu J, Yin P (2016) MiR-139-5p reverses CD44+/CD133+-associated multidrug resistance by downregulating NOTCH1 in colorectal carcinoma cells. Oncotarget 7(46):75118–75129. https://doi.org/10.18632/oncotarget.12611

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu ZR, Song Y, Wan LH, Zhang YY, Zhou LM (2016) Over-expression of miR-451a can enhance the sensitivity of breast cancer cells to tamoxifen by regulating 14-3-3zeta, estrogen receptor alpha, and autophagy. Life Sci 149:104–113. https://doi.org/10.1016/j.lfs.2016.02.059

    Article  PubMed  CAS  Google Scholar 

  19. Hasegawa S, Eguchi H, Nagano H, Konno M, Tomimaru Y, Wada H, Hama N, Kawamoto K, Kobayashi S, Nishida N, Koseki J, Nishimura T, Gotoh N, Ohno S, Yabuta N, Nojima H, Mori M, Doki Y, Ishii H (2014) MicroRNA-1246 expression associated with CCNG2-mediated chemoresistance and stemness in pancreatic cancer. Br J Cancer 111(8):1572–1580. https://doi.org/10.1038/bjc.2014.454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Wei R, Cao G, Deng Z, Su J, Cai L (2016) miR-140-5p attenuates chemotherapeutic drug-induced cell death by regulating autophagy through inositol 1,4,5-trisphosphate kinase 2 (IP3k2) in human osteosarcoma cells. Biosci Rep. https://doi.org/10.1042/BSR20160238

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pu Y, Zhao F, Wang H, Cai W, Gao J, Li Y, Cai S (2016) MiR-34a-5p promotes the multi-drug resistance of osteosarcoma by targeting the CD117 gene. Oncotarget 7(19):28420–28434. https://doi.org/10.18632/oncotarget.8546

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dell’Aversana C, Giorgio C, D’Amato L, Lania G, Matarese F, Saeed S, Di Costanzo A, Belsito PV, Ingenito C, Martens JH, Pallavicini I, Minucci S, Carissimo A, Stunnenberg HG, Altucci L (2017) miR-194-5p/BCLAF1 deregulation in AML tumorigenesis. Leukemia. https://doi.org/10.1038/leu.2017.64

    Article  PubMed Central  PubMed  Google Scholar 

  23. Tung SL, Huang WC, Hsu FC, Yang ZP, Jang TH, Chang JW, Chuang CM, Lai CR, Wang LH (2017) miRNA-34c-5p inhibits amphiregulin-induced ovarian cancer stemness and drug resistance via downregulation of the AREG-EGFR-ERK pathway. Oncogenesis 6(5):e326. https://doi.org/10.1038/oncsis.2017.25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Martin EC, Conger AK, Yan TJ, Hoang VT, Miller DF, Buechlein A, Rusch DB, Nephew KP, Collins-Burow BM, Burow ME (2017) MicroRNA-335-5p and -3p synergize to inhibit estrogen receptor alpha expression and promote tamoxifen resistance. FEBS Lett 591(2):382–392. https://doi.org/10.1002/1873-3468.12538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chen Y, Li R, Pan M, Shi Z, Yan W, Liu N, You Y, Zhang J, Wang X (2017) MiR-181b modulates chemosensitivity of glioblastoma multiforme cells to temozolomide by targeting the epidermal growth factor receptor. J Neuro-Oncol 133(3):477–485. https://doi.org/10.1007/s11060-017-2463-3

    Article  CAS  Google Scholar 

  26. Li X, Wang J, Xu A, Huang J, Meng L, Huang R, Wang J (2016) The microRNA-1268a rs28599926 polymorphism modified diffusely infiltrating astrocytoma risk and prognosis. International J Clin Exp Med 9(11):21615–21624. doi

    Google Scholar 

  27. Roesch A (2015) Tumor heterogeneity and plasticity as elusive drivers for resistance to MAPK pathway inhibition in melanoma. Oncogene 34(23):2951–2957. https://doi.org/10.1038/onc.2014.249

    Article  PubMed  CAS  Google Scholar 

  28. Zeng X, Zhao H, Li Y, Fan J, Sun Y, Wang S, Wang Z, Song P, Ju D (2015) Targeting Hedgehog signaling pathway and autophagy overcomes drug resistance of BCR-ABL-positive chronic myeloid leukemia. Autophagy 11(2):355–372. https://doi.org/10.4161/15548627.2014.994368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ding J, Zhou XT, Zou HY, Wu J (2017) Hedgehog signaling pathway affects the sensitivity of hepatoma cells to drug therapy through the ABCC1 transporter. Lab Investig 97(7):819–832. https://doi.org/10.1038/labinvest.2017.34

    Article  PubMed  CAS  Google Scholar 

  30. Bertheau P, Lehmann-Che J, Varna M, Dumay A, Poirot B, Porcher R, Turpin E, Plassa LF, de Roquancourt A, Bourstyn E, de Cremoux P, Janin A, Giacchetti S, Espie M, de The H (2013) p53 in breast cancer subtypes and new insights into response to chemotherapy. Breast 22 (Suppl 2):S27-S29. https://doi.org/10.1016/j.breast.2013.07.005

    Article  Google Scholar 

  31. Zeng H, Xu N, Liu Y, Liu B, Yang Z, Fu Z, Lian C, Guo H (2017) Genomic profiling of long non-coding RNA and mRNA expression associated with acquired temozolomide resistance in glioblastoma cells. Int J Oncol 51(2):445–455. https://doi.org/10.3892/ijo.2017.4033

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kitange GJ, Mladek AC, Carlson BL, Schroeder MA, Pokorny JL, Cen L, Decker PA, Wu W, Lomberk GA, Gupta SK, Urrutia RA, Sarkaria JN (2012) Inhibition of histone deacetylation potentiates the evolution of acquired temozolomide resistance linked to MGMT upregulation in glioblastoma xenografts. Clin Cancer Res 18(15):4070–4079. https://doi.org/10.1158/1078-0432.CCR-12-0560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Quail DF, Bowman RL, Akkari L, Quick ML, Schuhmacher AJ, Huse JT, Holland EC, Sutton JC, Joyce JA (2016) The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352(6288):d3018. https://doi.org/10.1126/science.aad3018

    Article  CAS  Google Scholar 

  34. Ma J, Wang T, Guo R, Yang X, Yin J, Yu J, Xiang Q, Pan X, Tang H, Lei X (2015) Involvement of miR-133a and miR-326 in ADM resistance of HepG2 through modulating expression of ABCC1. J Drug Target 23(6):519–524. https://doi.org/10.3109/1061186X.2015.1015536

    Article  PubMed  CAS  Google Scholar 

  35. Benyahia B, Huguet S, Decleves X, Mokhtari K, Criniere E, Bernaudin JF, Scherrmann JM, Delattre JY (2004) Multidrug resistance-associated protein MRP1 expression in human gliomas: chemosensitization to vincristine and etoposide by indomethacin in human glioma cell lines overexpressing MRP1. J Neurooncol 66(1–2):65–70. doi

    Article  PubMed  CAS  Google Scholar 

  36. Cui Y, Lin J, Zuo J, Zhang L, Dong Y, Hu G, Luo C, Chen J, Lu Y (2015) AKT2-knockdown suppressed viability with enhanced apoptosis, and attenuated chemoresistance to temozolomide of human glioblastoma cells in vitro and in vivo. Onco Targets Ther 8:1681–1690. https://doi.org/10.2147/OTT.S83795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Lu XY, Cao K, Li QY, Yuan ZC, Lu PS (2012) The synergistic therapeutic effect of temozolomide and hyperbaric oxygen on glioma U251 cell lines is accompanied by alterations in vascular endothelial growth factor and multidrug resistance-associated protein-1 levels. J Int Med Res 40(3):995–1004. https://doi.org/10.1177/147323001204000318

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (81372692, 81472315), National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2014BAI04B01), Science and Technology Program of Guangdong (2016A020213006), Natural Science Foundation of Guangdong Province (2014A030313167).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuping Peng or Songtao Qi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study has been approved by the Ethics Committee of Southern Medical University and has been performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, Y., Ren, J. et al. miR-1268a regulates ABCC1 expression to mediate temozolomide resistance in glioblastoma. J Neurooncol 138, 499–508 (2018). https://doi.org/10.1007/s11060-018-2835-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-018-2835-3

Keywords

Navigation