Skip to main content

Advertisement

Log in

A surgical strategy using a fusion image constructed from 11C-methionine PET, 18F-FDG-PET and MRI for glioma with no or minimum contrast enhancement

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the distribution of 11C-methionine (MET) and F-18 fluorodeoxyglucose (FDG) uptake in positron emission tomography (PET) imaging and the hyperintense area in T2 weighted imaging (T2WI) in glioma with no or poor gadolinium enhancement in magnetic resonance imaging (GdMRI). Cases were also analyzed pathologically. We prospectively investigated 16 patients with non- or minimally enhancing (< 10% volume) glioma. All patients underwent MET-PET and FDG-PET scans preoperatively. After delineating the tumor based on MET uptake, integrated 3D images from FDG-PET and MRI (GdMRI, T2WI or FLAIR) were generated and the final resection plane was planned. This resection plane was determined intraoperatively using the navigation-guided fencepost method. The delineation obtained by MET-PET imaging was larger than that with GdMRI in all cases with an enhanced effect. In contrast, the T2WI-abnormal signal area (T2WI+) tended to be larger than the MET uptake area (MET+). Tumor resection was > 95% in the non-eloquent area in 4/5 cases (80%), whereas 10 of 11 cases (90.9%) had partial resection in the eloquent area. In a case including the language area, 92% resection was achieved based on the MET-uptake area, in contrast to T2WI-based partial resection (65%), because the T2WI+/MET− area defined the language area. Pathological findings showed that the T2WI+/MET+ area is glioma, whereas 6 of 9 T2WI+/MET− lesions included normal tissues. Tissue from T2W1+/MET+/FDG+/GdMRI+ lesions gave an accurate diagnosis of grade in six cases. Non- or minimally enhancing gliomas were classified as having a MET uptake area that totally or partially overlapped with the T2WI hyperintense area. Resection planning with or without a metabolically active area in non- or minimally enhancing gliomas may be useful for accurate diagnosis, malignancy grading, and particularly for eloquent area although further study is needed to analyze the T2WI+/MET− area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115:3–8. https://doi.org/10.3171/2011.2.JNS10998

    Article  PubMed  Google Scholar 

  2. Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, Lang FF, McCutcheon IE, Hassenbusch SJ, Holland E, Hess K, Michael C, Miller D, Sawaya R (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:190–198. https://doi.org/10.3171/jns.2001.95.2.0190

    Article  PubMed  CAS  Google Scholar 

  3. Pope WB, Sayre J, Perlina A, Villablanca JP, Mischel PS, Cloughesy TF (2005) MR imaging correlates of survival in patients with high-grade gliomas. Am J Neuroradiol 26:2466–2474

    PubMed  Google Scholar 

  4. McGirt MJ, Chaichana KL, Gathinji M, Attenello FJ, Than K, Olivi A, Weingart JD, Brem H, Quinones-Hinojosa AR (2009) Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg 110:156–162. https://doi.org/10.3171/2008.4.17536

    Article  PubMed  Google Scholar 

  5. Smith JS, Chang EF, Lamborn KR, Chang SM, Prados MD, Cha S, Tihan T, Vandenberg S, McDermott MW, Berger MS (2008) Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol 26:1338–1345. https://doi.org/10.1200/JCO.2007.13.9337

    Article  PubMed  Google Scholar 

  6. Yeh SA, Ho JT, Lui CC, Huang YJ, Hsiung CY, Huang EY (2005) Treatment outcomes and prognostic factors in patients with supratentorial low-grade gliomas. Br J Radiol 78:230–235. https://doi.org/10.1259/bjr/28534346

    Article  PubMed  Google Scholar 

  7. Claus EB, Horlacher A, Hsu L, Schwartz RB, Dello-Iacono D, Talos F, Jolesz FA, Black PM (2005) Survival rates in patients with low-grade glioma after intraoperative magnetic resonance image guidance. Cancer 103:1227–1233. https://doi.org/10.1002/cncr.20867

    Article  PubMed  Google Scholar 

  8. Ginsberg LE, Fuller GN, Hashmi M, Leeds NE, Schomer DF (1998) The significance of lack of MR contrast enhancement of supratentorial brain tumors in adults: histopathological evaluation of a series. Surg Neurol 49:436–440

    Article  PubMed  CAS  Google Scholar 

  9. Barker FG, Chang SM, Huhn SL, Davis RL, Gutin PH, McDermott MW, Wilson CB, Prados MD (1997) Age and the risk of anaplasia in magnetic resonance-nonenhancing supratentorial cerebral tumors. Cancer 80:936–941

    Article  PubMed  Google Scholar 

  10. Pace A, Vidiri A, Galie E, Carosi M, Telera S, Cianciulli AM, Canalini P, Giannarelli D, Jandolo B, Carapella CM (2003) Temozolomide chemotherapy for progressive low-grade glioma: clinical benefits and radiological response. Ann Oncol 14:1722–1726

    Article  PubMed  CAS  Google Scholar 

  11. Hammoud MA, Sawaya R, Shi W, Thall PF, Leeds NE (1996) Prognostic significance of preoperative MRI scans in glioblastoma multiforme. J Neurooncol 27:65–73

    Article  PubMed  CAS  Google Scholar 

  12. Chaichana KL, Kosztowski T, Niranjan A, Olivi A, Weingart JD, Laterra J, Brem H, Quinones-Hinojosa A (2010) Prognostic significance of contrast-enhancing anaplastic astrocytomas in adults. J Neurosurg 113:286–292. https://doi.org/10.3171/2010.2.JNS091010

    Article  PubMed  Google Scholar 

  13. Ideguchi M, Kajiwara K, Goto H, Sugimoto K, Nomura S, Ikeda E, Suzuki M (2015) MRI findings and pathological features in early-stage glioblastoma. J Neurooncol. https://doi.org/10.1007/s11060-015-1797-y

    Article  PubMed  Google Scholar 

  14. Hillner BE, Siegel BA, Liu D, Shields AF, Gareen IF, Hanna L, Stine SH, Coleman RE (2008) Impact of positron emission tomography/computed tomography and positron emission tomography (PET) alone on expected management of patients with cancer: initial results from the National Oncologic PET Registry. J Clin Oncol 26:2155–2161. https://doi.org/10.1200/JCO.2007.14.5631

    Article  PubMed  Google Scholar 

  15. Chen W, Silverman DH (2008) Advances in evaluation of primary brain tumors. Semin Nucl Med 38:240–250. https://doi.org/10.1053/j.semnuclmed.2008.02.005

    Article  PubMed  Google Scholar 

  16. Di Chiro G, DeLaPaz RL, Brooks RA, Sokoloff L, Kornblith PL, Smith BH, Patronas NJ, Kufta CV, Kessler RM, Johnston GS, Manning RG, Wolf AP (1982) Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology 32:1323–1329

    Article  PubMed  Google Scholar 

  17. Padma MV, Said S, Jacobs M, Hwang DR, Dunigan K, Satter M, Christian B, Ruppert J, Bernstein T, Kraus G, Mantil JC (2003) Prediction of pathology and survival by FDG PET in gliomas. J Neurooncol 64:227–237

    Article  PubMed  CAS  Google Scholar 

  18. Singhal T, Narayanan TK, Jain V, Mukherjee J, Mantil J (2008) 11C-l-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol 10:1–18. https://doi.org/10.1007/s11307-007-0115-2

    Article  PubMed  Google Scholar 

  19. Herholz K, Holzer T, Bauer B, Schroder R, Voges J, Ernestus RI, Mendoza G, Weber-Luxenburger G, Lottgen J, Thiel A, Wienhard K, Heiss WD (1998) 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 50:1316–1322

    Article  PubMed  CAS  Google Scholar 

  20. Louis DN, Ohgaki H, Weistler OD, Cavenee WK (2007) WHO classification of tumours of the central nervous system, 4th edn. IARC Press, Lyon

    Google Scholar 

  21. Galldiks N, Kracht LW, Dunkl V, Ullrich RT, Vollmar S, Jacobs AH, Fink GR, Schroeter M (2011) Imaging of non- or very subtle contrast-enhancing malignant gliomas with [(1)(1)C]-methionine positron emission tomography. Mol Imaging 10:453–459

    Article  PubMed  CAS  Google Scholar 

  22. Miwa K, Shinoda J, Yano H, Okumura A, Iwama T, Nakashima T, Sakai N (2004) Discrepancy between lesion distributions on methionine PET and MR images in patients with glioblastoma multiforme: insight from a PET and MR fusion image study. J Neurol Neurosurg Psychiatry 75:1457–1462. https://doi.org/10.1136/jnnp.2003.028480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kinoshita M, Hashimoto N, Goto T, Yanagisawa T, Okita Y, Kagawa N, Kishima H, Tanaka H, Fujita N, Shimosegawa E, Hatazawa J, Yoshimine T (2009) Use of fractional anisotropy for determination of the cut-off value in 11C-methionine positron emission tomography for glioma. Neuroimage 45:312–318. https://doi.org/10.1016/j.neuroimage.2008.11.034

    Article  PubMed  Google Scholar 

  24. Kracht LW, Miletic H, Busch S, Jacobs AH, Voges J, Hoevels M, Klein JC, Herholz K, Heiss WD (2004) Delineation of brain tumor extent with [11C]l-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res 10:7163–7170. https://doi.org/10.1158/1078-0432.CCR-04-0262

    Article  PubMed  CAS  Google Scholar 

  25. Yoshikawa K, Kajiwara K, Morioka J, Fujii M, Tanaka N, Fujisawa H, Kato S, Nomura And S, Suzuki M (2006) Improvement of functional outcome after radical surgery in glioblastoma patients: the efficacy of a navigation-guided fence-post procedure and neurophysiological monitoring. J Neurooncol 78:91–97

    Article  PubMed  Google Scholar 

  26. Kajiwara K, Yoshikawa K, Ideguchi M, Nomura S, Fujisawa H, Akimura T, Kato S, Fujii M, Suzuki M (2010) Navigation-guided fence-post tube technique for resection of a brain tumor: technical note. Minim Invasive Neurosurg 53:86–90. https://doi.org/10.1055/s-0030-1249053

    Article  PubMed  CAS  Google Scholar 

  27. Sanai N, Berger MS (2008) Glioma extent of resection and its impact on patient outcome. Neurosurgery 62:753–764. https://doi.org/10.1227/01.neu.0000318159.21731.cf (discussion 264–756)

    Article  PubMed  Google Scholar 

  28. Herholz K, Pietrzyk U, Voges J, Schroder R, Halber M, Treuer H, Sturm V, Heiss WD (1993) Correlation of glucose consumption and tumor cell density in astrocytomas. A stereotactic PET study. J Neurosurg 79:853–858. https://doi.org/10.3171/jns.1993.79.6.0853

    Article  PubMed  CAS  Google Scholar 

  29. Goldman S, Levivier M, Pirotte B, Brucher JM, Wikler D, Damhaut P, Stanus E, Brotchi J, Hildebrand J (1996) Regional glucose metabolism and histopathology of gliomas. A study based on positron emission tomography-guided stereotactic biopsy. Cancer 78:1098–1106

    Article  PubMed  CAS  Google Scholar 

  30. Kaschten B, Stevenaert A, Sadzot B, Deprez M, Degueldre C, Del Fiore G, Luxen A, Reznik M (1998) Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 39:778–785

    PubMed  CAS  Google Scholar 

  31. Kato T, Shinoda J, Nakayama N, Miwa K, Okumura A, Yano H, Yoshimura S, Maruyama T, Muragaki Y, Iwama T (2008) Metabolic assessment of gliomas using 11C-methionine, [18F] fluorodeoxyglucose, and 11C-choline positron-emission tomography. Am J Neuroradiol 29:1176–1182. https://doi.org/10.3174/ajnr.A1008

    Article  PubMed  CAS  Google Scholar 

  32. Pauleit D, Stoffels G, Bachofner A, Floeth FW, Sabel M, Herzog H, Tellmann L, Jansen P, Reifenberger G, Hamacher K, Coenen HH, Langen KJ (2009) Comparison of (18)F-FET and (18)F-FDG PET in brain tumors. Nucl Med Biol 36:779–787. https://doi.org/10.1016/j.nucmedbio.2009.05.005

    Article  PubMed  CAS  Google Scholar 

  33. Mosskin M, Ericson K, Hindmarsh T, von Holst H, Collins VP, Bergstrom M, Eriksson L, Johnstrom P (1989) Positron emission tomography compared with magnetic resonance imaging and computed tomography in supratentorial gliomas using multiple stereotactic biopsies as reference. Acta Radiol 30:225–232

    Article  PubMed  CAS  Google Scholar 

  34. Bergstrom M, Collins VP, Ehrin E, Ericson K, Eriksson L, Greitz T, Halldin C, von Holst H, Langstrom B, Lilja A et al (1983) Discrepancies in brain tumor extent as shown by computed tomography and positron emission tomography using [68Ga]EDTA, [11C]glucose, and [11C]methionine. J Comput Assist Tomogr 7:1062–1066

    Article  PubMed  CAS  Google Scholar 

  35. Ericson K, Lilja A, Bergstrom M, Collins VP, Eriksson L, Ehrin E, von Holst H, Lundqvist H, Langsrom BB, Mosskin M (1985) Positron emission tomography with ([11C]methyl)-l-methionine, [11C]d-glucose, and [68Ga]EDTA in supratentorial tumors. J Comput Assist Tomogr 9:683–689

    Article  PubMed  CAS  Google Scholar 

  36. Derlon JM, Bourdet C, Bustany P, Chatel M, Theron J, Darcel F, Syrota A (1989) [11C]L-methionine uptake in gliomas. Neurosurgery 25:720–728

    Article  PubMed  CAS  Google Scholar 

  37. Eisner W, Burtscher J, Bale R, Sweeney R, Koppelstatter F, Golaszewski S, Kolbitsch C, Twerdy K (2002) Use of neuronavigation and electrophysiology in surgery of subcortically located lesions in the sensorimotor strip. J Neurol Neurosurg Psychiatry 72:378–381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Dorward NL, Alberti O, Velani B, Gerritsen FA, Harkness WF, Kitchen ND, Thomas DG (1998) Postimaging brain distortion: magnitude, correlates, and impact on neuronavigation. J Neurosurg 88:656–662. https://doi.org/10.3171/jns.1998.88.4.0656

    Article  PubMed  CAS  Google Scholar 

  39. Nimsky C, Ganslandt O, Kober H, Moller M, Ulmer S, Tomandl B, Fahlbusch R (1999) Integration of functional magnetic resonance imaging supported by magnetoencephalography in functional neuronavigation. Neurosurgery 44:1249–1255 (discussion 1255–1246)

    PubMed  CAS  Google Scholar 

  40. Samset E, Hogetveit JO, Cate GT, Hirschberg H (2005) Integrated neuronavigation system with intraoperative image updating. Minim Invasive Neurosurg 48:73–76. https://doi.org/10.1055/s-2004-830224

    Article  PubMed  CAS  Google Scholar 

  41. Schulder M, Liang D, Carmel PW (2001) Cranial surgery navigation aided by a compact intraoperative magnetic resonance imager. J Neurosurg 94:936–945. https://doi.org/10.3171/jns.2001.94.6.0936

    Article  PubMed  CAS  Google Scholar 

  42. Pirotte BJ, Levivier M, Goldman S, Massager N, Wikler D, Dewitte O, Bruneau M, Rorive S, David P, Brotchi J (2009) Positron emission tomography-guided volumetric resection of supratentorial high-grade gliomas: a survival analysis in 66 consecutive patients. Neurosurgery 64:471–481 (discussion 481)

    Article  PubMed  Google Scholar 

  43. Tanaka Y, Nariai T, Momose T, Aoyagi M, Maehara T, Tomori T, Yoshino Y, Nagaoka T, Ishiwata K, Ishii K, Ohno K (2009) Glioma surgery using a multimodal navigation system with integrated metabolic images. J Neurosurg 110:163–172. https://doi.org/10.3171/2008.4.17569

    Article  PubMed  Google Scholar 

  44. Singhal T, Narayanan TK, Jacobs MP, Bal C, Mantil JC (2012) 11C-methionine PET for grading and prognostication in gliomas: a comparison study with 18F-FDG PET and contrast enhancement on MRI. J Nucl Med 53:1709–1715. https://doi.org/10.2967/jnumed.111.102533

    Article  PubMed  Google Scholar 

  45. Pirotte B, Goldman S, Dewitte O, Massager N, Wikler D, Lefranc F, Ben Taib NO, Rorive S, David P, Brotchi J, Levivier M (2006) Integrated positron emission tomography and magnetic resonance imaging-guided resection of brain tumors: a report of 103 consecutive procedures. J Neurosurg 104:238–253. https://doi.org/10.3171/jns.2006.104.2.238

    Article  PubMed  Google Scholar 

  46. Pirotte B, Goldman S, Massager N, David P, Wikler D, Vandesteene A, Salmon I, Brotchi J, Levivier M (2004) Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med 45:1293–1298

    PubMed  CAS  Google Scholar 

  47. Pirotte B, Goldman S, Salzberg S, Wikler D, David P, Vandesteene A, Van Bogaert P, Salmon I, Brotchi J, Levivier M (2003) Combined positron emission tomography and magnetic resonance imaging for the planning of stereotactic brain biopsies in children: experience in 9 cases. Pediatr Neurosurg 38:146–155

    Article  PubMed  Google Scholar 

  48. Bello L, Gallucci M, Fava M, Carrabba G, Giussani C, Acerbi F, Baratta P, Songa V, Conte V, Branca V, Stocchetti N, Papagno C, Gaini SM (2007) Intraoperative subcortical language tract mapping guides surgical removal of gliomas involving speech areas. Neurosurgery 60:67–80 (discussion 80–62)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ideguchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ideguchi, M., Nishizaki, T., Ikeda, N. et al. A surgical strategy using a fusion image constructed from 11C-methionine PET, 18F-FDG-PET and MRI for glioma with no or minimum contrast enhancement. J Neurooncol 138, 537–548 (2018). https://doi.org/10.1007/s11060-018-2821-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-018-2821-9

Keywords

Navigation