Skip to main content

Advertisement

Log in

Anti-differentiation non-coding RNA, ANCR, is differentially expressed in different types of brain tumors

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Long non-coding RNAs (lncRNAs) are important modulators of various cellular and molecular events, including cancer-associated pathways. The Anti-differentiation ncRNA (ANCR) is a key regulator of keratinocyte differentiation, where its expression is necessary to maintain epidermal progenitor’s cells. Herein, we investigated the expression pattern of ANCR in the course of neural differentiation. Moreover, we used published RNAseq data and clinical samples to evaluate the alteration of ANCR expression in different cell types and brain tumors. Furthermore, we manipulated ANCR expression in glioma cell lines to clarify a potential functional role for ANCR in tumorigenesis. Our qRT-PCR results revealed a significant upregulation of ANCR in more malignant and less differentiated types of brain tumors (P = 0.03). This data was in accordance with down regulation of ANCR during neural differentiation. ANCR suppression caused an elevation in apoptosis rate, as well as a G1 cell cycle arrest in glioblastoma cell line. Altogether, our data demonstrated that ANCR may play a role in glioma genesis and that it could be considered as a potential diagnostic and therapeutic target to combat brain cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amaral PP et al (2008) The eukaryotic genome as an RNA machine. Science 319(5871):1787–1789

    Article  CAS  PubMed  Google Scholar 

  2. Chen L-L, Carmichael GG (2010) Decoding the function of nuclear long non-coding RNAs. Curr Opin Cell Biol 22(3):357–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guttman M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Khalil AM et al (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA 106(28):11667–11672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Orom UA et al (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143(1):46–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Navarro P et al (2008) Molecular coupling of Xist regulation and pluripotency. Science 321(5896):1693–1695

    Article  CAS  PubMed  Google Scholar 

  7. Ogawa Y, Sun BK, Lee JT (2008) Intersection of the RNA interference and X-inactivation pathways. Science 320(5881):1336–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gabory A, Jammes H, Dandolo L (2010) The H19 locus: role of an imprinted non-coding RNA in growth and development. Bioessays 32(6):473–480

    Article  CAS  PubMed  Google Scholar 

  9. Gupta RA et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rinn JL et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tripathi V et al (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39(6):925–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ji P et al (2003) MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22(39):8031–8041

    Article  PubMed  Google Scholar 

  13. Nishimoto Y et al (2013) The long non-coding RNA nuclear-enriched abundant transcript 1_2 induces paraspeckle formation in the motor neuron during the early phase of amyotrophic lateral sclerosis. Mol Brain 6(1):31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kotake Y et al (2010) Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15INK4B tumor suppressor gene. Oncogene 30(16):1956–1962

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bond CS, Fox AH (2009) Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol 186(5):637–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cesana M et al (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147(2):358–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang Y et al (2013) Endogenous miRNA Sponge lincRNA-RoR Regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell 25(1):69–80

    Article  CAS  PubMed  Google Scholar 

  18. Wilusz JE, Freier SM, Spector DL (2008) 3′ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135(5):919–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gong C, Maquat LE (2011) lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470(7333):284–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huarte M, Rinn JL (2010) Large non-coding RNAs: missing links in cancer? Hum Mol Genet 19(R2):R152-61

    Article  PubMed  Google Scholar 

  21. Salta E, De Strooper B (2012) Non-coding RNAs with essential roles in neurodegenerative disorders. Lancet Neurol 11(2):189–200

    Article  CAS  PubMed  Google Scholar 

  22. Han L et al (2012) LncRNA profile of glioblastoma reveals the potential role of lncRNAs in contributing to glioblastoma pathogenesis. Int J Oncol 40(6):2004–2012

    CAS  PubMed  Google Scholar 

  23. Kretz M et al (2012) Suppression of progenitor differentiation requires the long noncoding RNA ANCR. Genes Dev 26(4):338–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhu L, Xu PC (2013) Downregulated LncRNA-ANCR promotes osteoblast differentiation by targeting EZH2 and regulating Runx2 expression. Biochem Biophys Res Commun 432(4):612–617

    Article  CAS  PubMed  Google Scholar 

  25. Malakootian M et al (2010) Differential expression of nucleostemin, a stem cell marker, and its variants in different types of brain tumors. Mol Carcinog 49(9):818–825

    CAS  PubMed  Google Scholar 

  26. Andrews PW (1984) Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev Biol 103(2):285–293

    Article  CAS  PubMed  Google Scholar 

  27. Atlasi Y et al (2008) OCT4 spliced variants are differentially expressed in human pluripotent and nonpluripotent cells. Stem Cells 26(12):3068–3074

    Article  CAS  PubMed  Google Scholar 

  28. Li J et al (2015) TANRIC: an interactive open platform to explore the function of lncRNAs in cancer. Cancer Res 75(18):3728–3737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shahryari A et al (2014) Two novel splice variants of SOX2OT, SOX2OT-S1, and SOX2OT-S2 are coupregulated with SOX2 and OCT4 in esophageal squamous cell carcinoma. Stem Cells 32(1):126–134

    Article  CAS  PubMed  Google Scholar 

  30. Gräff J et al (2011) Epigenetic regulation of gene expression in physiological and pathological brain processes. Physiolog Rev 91(2):603

    Article  Google Scholar 

  31. Mehler MF (2008) Epigenetic principles and mechanisms underlying nervous system functions in health and disease. Progr Neurobiol 86(4):305–341

    Article  CAS  Google Scholar 

  32. Pastori C, Wahlestedt C (2012) Involvement of long noncoding RNAs in diseases affecting the central nervous system. RNA Biol 9(6):860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Roth TL (2012) Epigenetics of neurobiology and behavior during development and adulthood. Dev Psychobiol 54(6):590–597

    Article  CAS  PubMed  Google Scholar 

  34. Sauvageau M et al (2013) Multiple knockout mouse models reveal lincRNAs are required for life and brain development. eLife 2:e01749

    Article  PubMed  PubMed Central  Google Scholar 

  35. Urano Y et al (1991) Interstitial chromosomal deletion within 4q11–q13 in a human hepatoma cell line. Cancer Res 51(5):1460–1464

    CAS  PubMed  Google Scholar 

  36. Holtkamp N et al (2007) Characterization of the amplicon on chromosomal segment 4q12 in glioblastoma multiforme. Neuro-Oncol 9(3):291–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Malakootian M et al. A Long noncoding RNA, ANCR, is upregulated in bladder and breast tumor tissues. J Cell Mol Res 7(1):26–31, 2014

    Google Scholar 

  38. Liu Y et al (2015) Over-expression of lncRNA DANCR is associated with advanced tumor progression and poor prognosis in patients with colorectal cancer. Int J Clin Exp Pathol 8(9):11480

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Li Z et al (2017) LncRNA ANCR down-regulation promotes TGF-β-induced EMT and metastasis in breast cancer. Oncotarget 8(26):67329

    PubMed  PubMed Central  Google Scholar 

  40. Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469(7330):343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morey L, Helin K (2010) Polycomb group protein-mediated repression of transcription. Trends Biochem Sci 35(6):323–332

    Article  CAS  PubMed  Google Scholar 

  42. Yoo KH, Hennighausen L (2012) EZH2 methyltransferase and H3K27 methylation in breast cancer. Int J Biol Sci 8(1):59

    Article  CAS  PubMed  Google Scholar 

  43. Fan T-Y et al (2014) Inhibition of EZH2 reverses chemotherapeutic drug TMZ chemosensitivity in glioblastoma. Int J Clin Exp Pathol 7(10):6662

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pleasure SJ, Lee VY (1993) NTera 2 cells: a human cell line which displays characteristics expected of a human committed neuronal progenitor cell. J Neurosci Res 35(6):585–602

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very thankful to Dr. Mohammad Malakootian, Dr. Zahra Bahadori, Ms Parisa Naeli, Ms Mozhgan Saadat, Ms. Hayat and Ms. Mohseni for their excellent advices and technical assistances. This work was supported by a research grant from Iran National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Javad Mowla.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in this research.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11060_2018_2809_MOESM1_ESM.jpeg

Supplementary Figure 1: The expression pattern of ANCR in TCGA Glioblastoma multiforme (GBM) samples. To evaluate the expression of ANCR lncRNA in larger sample size we have used TANRIC to calculate the expression level in TCGA RNA sequencing data. TANRIC analyzed 154 samples for GBM in 5 different subtypes (reported P value: 0.000031827) (JPEG 58 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malakootian, M., Mirzadeh Azad, F., Fouani, Y. et al. Anti-differentiation non-coding RNA, ANCR, is differentially expressed in different types of brain tumors. J Neurooncol 138, 261–270 (2018). https://doi.org/10.1007/s11060-018-2809-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-018-2809-5

Keywords

Navigation