Skip to main content

Advertisement

Log in

Higher levels of progranulin in cerebrospinal fluid of patients with lymphoma and carcinoma with CNS metastasis

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Assessing central nervous system (CNS) involvement in patients with lymphoma or carcinoma is important in determining therapy and prognosis. Progranulin (PGRN) is a secreted glycosylated protein with roles in cancer growth and survival; it is highly expressed in aggressive cancer cell lines and specimens from many cancer types. We examined PRGN levels by Enzyme Immuno-Assay (EIA) in cerebrospinal fluid (CSF) samples from 230 patients, including 18 with lymphoma [12 with CNS metastasis (CNS+); 6 without CNS metastasis (CNS)], 21 with carcinomas (10 CNS+; 11 CNS), and 191 control patients with non-cancer neurological diseases, and compared PRGN levels among these disease groups. Median CSF PGRN levels in the CNS+ lymphoma group were significantly higher than in the CNS lymphoma and control non-cancer groups; and were also significantly higher in the CNS+ carcinoma group than in the CNS carcinoma and control groups, except for patients with infectious neurological disorders. Receiver operating characteristic curve analyses revealed that CSF PGRN levels distinguished CNS+ lymphoma from CNS lymphoma and non-cancer neurological diseases [area under curve (AUC): 0.969]; and distinguished CNS+ carcinomas from CNS carcinomas and non-cancer neurological diseases (AUC: 0.918). We report here, for the first time, that CSF PGRN levels are higher in patients with CNS+ lymphoma and carcinomas compared to corresponding CNS diseases. This would imply that measuring CSF PGRN levels could be used to monitor CNS+ lymphoma and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lee W, Kim SJ, Lee S et al (2005) Significance of cerebrospinal fluid sIL-2R level as a marker of CNS involvement in acute lymphoblastic leukemia. Ann Clin Lab Sci 35:407–412

    CAS  PubMed  Google Scholar 

  2. Hansen PB, Kjeldsen L, Dalhoff K, Olesen B (1992) Cerebrospinal fluid beta-2-microglobulin in adult patients with acute leukemia or lymphoma: a useful marker in early diagnosis and monitoring of CNS-involvement. Acta Neurol Scand 85:224–227

    Article  CAS  PubMed  Google Scholar 

  3. Aviles A, Gómez R, Salas J (1991) Ferritin in the cerebrospinal fluid as an early indicator of neuromeningeal involvement in patients with malignant lymphoma. Gac Med Mex 127:249–252 (Spanish)

    CAS  PubMed  Google Scholar 

  4. Roy S, Josephson SA, Fridlyand J et al (2008) Protein biomarker identification in the CSF of patients with CNS lymphoma. J Clin Oncol 26:96–105

    Article  CAS  PubMed  Google Scholar 

  5. Baraniskin A, Kuhnhenn J, Schlegel U et al (2011) Identification of microRNAs in the cerebrospinal fluid as marker for primary diffuse large B-cell lymphoma of the central nervous system. Blood 117:3140–3146

    Article  CAS  PubMed  Google Scholar 

  6. Wei D, Wan Q, Li L et al (2015) MicroRNAs as potential biomarkers for diagnosing cancers of central nervous system: a meta-analysis. Mol Neurobiol 51:1452–1461

    Article  CAS  PubMed  Google Scholar 

  7. Yu X, Li Z, Shen J, Chan MT, Wu WK (2016) Role of microRNAs in primary central nervous system lymphomas. Cell Prolif 49:147–153

    Article  CAS  PubMed  Google Scholar 

  8. Viaccoz A, Ducray F, Tholance Y et al (2015) CSF neopterin level as a diagnostic marker in primary central nervous system lymphoma. Neuro Oncol 17:1497–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Strehlow F, Bauer S, Martus P et al (2016) Osteopontin in cerebrospinal fluid as diagnostic biomarker for central nervous system lymphoma. J Neurooncol 129:165–171

    Article  CAS  PubMed  Google Scholar 

  10. Rubenstein JL, Wong VS, Kadoch C et al (2013) CXCL13 plus interleukin 10 is highly specific for the diagnosis of CNS lymphoma. Blood 121:4740–4748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fischer L, Korfel A, Pfeiffer S et al (2009) CXCL13 and CXCL12 in central nervous system lymphoma patients. Clin Cancer Res 15:5968–5973

    Article  CAS  PubMed  Google Scholar 

  12. Berghoff AS, Stefanits H, Woehrer A et al (2013) Clinical neuropathology practice guide 3-2013: levels of evidence and clinical utility of prognostic and predictive candidate brain tumor biomarkers. Clin Neuropathol 32:148–158

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ahluwalia MS, Wallace PK, Peereboom DM (2012) Flow cytometry as a diagnostic tool in lymphomatous or leukemic meningitis: ready for prime time? Cancer 118:1747–1753

    Article  PubMed  Google Scholar 

  14. He Z, Bateman A (1999) Progranulin gene expression regulates epithelial cell growth and promotes tumor growth in vivo. Cancer Res 59:3222–3229

    CAS  PubMed  Google Scholar 

  15. He Z, Ismail A, Kriazhev L, Sadvakassova G, Bateman A (2002) Progranulin (PC-cell-derived growth factor/acrogranin) regulates invasion and cell survival. Cancer Res 62:5590–5596

    CAS  PubMed  Google Scholar 

  16. He Z, Bateman A (2003) Progranulin (granulin–epithelin precursor, PC-cell-derived growth factor, acrogranin) mediates tissue repair and tumorigenesis. J Mol Med 81:600–612

    Article  CAS  PubMed  Google Scholar 

  17. Serrero G (2003) Autocrine growth factor revisited: PC-cell-derived growth factor (progranulin), a critical player in breast cancer tumorigenesis. Biochem Biophys Res Commun 308:409–413

    Article  CAS  PubMed  Google Scholar 

  18. Ong CH, Bateman A (2003) Progranulin (granulin–epithelin precursor, PC-cell derived growth factor, acrogranin) in proliferation and tumorigenesis. Histol Histopathol 18:1275–1288

    CAS  PubMed  Google Scholar 

  19. Serrero G, Ioffe OB (2003) Expression of PC-cell-derived growth factor in benign and malignant human breast epithelium. Hum Pathol 34:1148–1154

    Article  CAS  PubMed  Google Scholar 

  20. Ho JC, Ip YC, Cheung ST et al (2008) Granulin–epithelin precursor as a therapeutic target for hepatocellular carcinoma. Hepatology 47:1524–1532

    Article  CAS  PubMed  Google Scholar 

  21. Cuevas-Antonio R, Cancino C, Arechavaleta-Velasco F et al (2010) Expression of progranulin (acrogranin/PCDGF/granulin–epithelin precursor) in benign and malignant ovarian tumors and activation of MAPK signaling in ovarian cancer cell line. Cancer Invest 28:452–458

    Article  CAS  PubMed  Google Scholar 

  22. Dong T, Yang D, Li R et al (2016) PGRN promotes migration and invasion of epithelial ovarian cancer cells through an epithelial mesenchymal transition program and the activation of cancer associated fibroblasts. Exp Mol Pathol 100:17–25

    Article  CAS  PubMed  Google Scholar 

  23. Tangkeangsirisin W, Hayashi J, Serrero G (2004) PC cell-derived growth factor mediates tamoxifen resistance and promotes tumor growth of human breast cancer cells. Cancer Res 64:1737–1743

    Article  CAS  PubMed  Google Scholar 

  24. Tangkeangsirisin W, Serrero G (2004) PC cell-derived growth factor (PCDGF/GP88, progranulin) stimulates migration, invasiveness and VEGF expression in breast cancer cells. Carcinogenesis 25:1587–1592

    Article  CAS  PubMed  Google Scholar 

  25. Matsumura N, Mandai M, Miyanishi M et al (2006) Oncogenic property of acrogranin in human uterine leiomyosarcoma: direct evidence of genetic contribution in in vivo tumorigenesis. Clin Cancer Res 12:1402–1411

    Article  CAS  PubMed  Google Scholar 

  26. Frampton G, Invernizzi P, Bernuzzi F et al (2012) Interleukin-6-driven progranulin expression increases cholangiocarcinoma growth by an Akt-dependent mechanism. Gut 61:268–277

    Article  CAS  PubMed  Google Scholar 

  27. Frampton G, Ueno Y, Quinn M et al (2012) The novel growth factor, progranulin, stimulates mouse cholangiocyte proliferation via sirtuin-1-mediated inactivation of FOXO1. Am J Physiol Gastrointest Liver Physiol 303:G1202–G1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Göbel M, Eisele L, Möllmann M et al (2013) Progranulin is a novel independent predictor of disease progression and overall survival in chronic lymphocytic leukemia. PLoS ONE 8:e72107

    Article  PubMed  PubMed Central  Google Scholar 

  29. Edelman MJ, Feliciano J, Yue B et al (2014) GP88 (progranulin): a novel tissue and circulating biomarker for non-small cell lung carcinoma. Hum Pathol 45:1893–1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Monami G, Gonzalez EM, Hellman M et al (2006) Proepithelin promotes migration and invasion of 5637 bladder cancer cells through the activation of ERK1/2 and the formation of a paxillin/FAK/ERK complex. Cancer Res 66:7103–7110

    Article  CAS  PubMed  Google Scholar 

  31. Wang M, Li G, Yin J, Lin T, Zhang J (2012) Progranulin overexpression predicts overall survival in patients with glioblastoma. Med Oncol 29:2423–2431

    Article  CAS  PubMed  Google Scholar 

  32. Lu Y, Zheng L, Zhang W et al (2014) Growth factor progranulin contributes to cervical cancer cell proliferation and transformation in vivo and in vitro. Gynecol Oncol 134:364–371

    Article  CAS  PubMed  Google Scholar 

  33. Wei Z, Huang Y, Xie N, Ma Q (2015) Elevated expression of secreted autocrine growth factor progranulin increases cervical cancer growth. Cell Biochem Biophys 71:189–193

    Article  CAS  PubMed  Google Scholar 

  34. Demorrow S (2013) Progranulin: a novel regulator of gastrointestinal cancer progression. Transl Gastrointest Cancer 2:145–151

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang D, Wang LL, Dong TT et al (2015) Progranulin promotes colorectal cancer proliferation and angiogenesis through TNFR2/Akt and ERK signaling pathways. Am J Cancer Res 5:3085–3097

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Koo DH, Park CY, Lee ES, Ro J, Oh SW (2012) Progranulin as a prognostic biomarker for breast cancer recurrence in patients who had hormone receptor-positive tumors: a cohort study. PLoS ONE 7:e39880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Han JJ, Yu M, Houston N, Steinberg SM, Kohn EC (2011) Progranulin is a potential prognostic biomarker in advanced epithelial ovarian cancers. Gynecol Oncol 120:5–10

    Article  CAS  PubMed  Google Scholar 

  38. Baker M, Mackenzie IR, Pickering-Brown SM et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442:916–919

    Article  CAS  PubMed  Google Scholar 

  39. Cruts M, Gijselinck I, van der Zee J et al (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442:920–924

    Article  CAS  PubMed  Google Scholar 

  40. Van Damme P, Van Hoecke A, Lambrechts D et al (2008) Progranulin functions as a neurotrophic factor to regulate neurite outgrowth and enhance neuronal survival. J Cell Biol 181:37–41

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ghidoni R, Benussi L, Glionna M, Franzoni M, Binetti G (2008) Low plasma progranulin levels predict progranulin mutations in frontotemporal lobar degeneration. Neurology 71:1235–1239

    Article  CAS  PubMed  Google Scholar 

  42. Tkaczuk KR, Yue B, Zhan M et al (2011) Increased circulating level of the survival factor GP88 (Progranulin) in the serum of breast cancer patients when compared to healthy subjects. Breast Cancer (Auckl) 5:155–162

    CAS  Google Scholar 

  43. Yamamoto Y, Takemura M, Serrero G et al (2014) Increased serum GP88 (progranulin) concentrations in rheumatoid arthritis. Inflammation 37:1806–1813

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. T. Kudo, Dr. M. Yasunishi, Dr. A. Takekoshi, Dr. N. Harada, Dr. A. Koumura and Dr. M. Yamada (Departments of Neurology and Geriatrics, Gifu University Graduate School of Medicine) for providing patients’ clinical information. We also thank Marla Brunker, from Edanz Group (http://www.edanzediting.com/ac) for editing a draft of this manuscript.

Funding

This research was partially supported by a Grant-in-Aid for Scientific Research (C) (26461290) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akio Kimura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11060_2017_2742_MOESM1_ESM.tif

Supplementary Figure 1—Brain MRI of a patient with CNS+ lymphoma, whose CSF PGRN value exceeds the cutoff level, despite having normal brain MRI and CSF findings. FLAIR (A) and enhanced T1-weighted (B) images after one month of confirming increased CSF PGRN level (5.33 ng/mL) show no abnormal findings. FLAIR (C) and enhanced T1-weighted (D) images two months later show extended white matter hyperintensities and multiple parenchymal and leptomeningeal enhancement lesions. CNS: central nervous system, CSF: cerebrospinal fluid, FLAIR: fluid attenuated inversion recovery, MRI: magnetic resonance imaging, PGRN: progranulin (TIF 7076 KB)

11060_2017_2742_MOESM2_ESM.tif

Supplementary Figure 2—FLAIR images of a patient with CNS+ lymphoma, whose CSF PGRN levels increased with getting worse of brain MRI findings. (A, B) FLAIR images when CSF PGRN level was 3.18 ng/mL Slight hyperintensity lesions were observed in bilateral internal capsule and pontine tegmentum. (C, D) FLAIR images in the same patient four months later, when CSF PGRN level was 24.65 ng/mL Extended hyperintensity lesions were observed in cerebral white matter, brain stem, and cerebellum. CNS: central nervous system, CSF: cerebrospinal fluid, FLAIR: fluid attenuated inversion recovery, MRI: magnetic resonance imaging, PGRN: progranulin (TIF 7522 KB)

Supplementary material 3 (DOCX 14 KB)

Supplementary material 4 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, A., Takemura, M., Serrero, G. et al. Higher levels of progranulin in cerebrospinal fluid of patients with lymphoma and carcinoma with CNS metastasis. J Neurooncol 137, 455–462 (2018). https://doi.org/10.1007/s11060-017-2742-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-017-2742-z

Keywords

Navigation