Journal of Neuro-Oncology

, Volume 137, Issue 2, pp 269–278 | Cite as

Immunophenotyping of pediatric brain tumors: correlating immune infiltrate with histology, mutational load, and survival and assessing clonal T cell response

  • Ashley S. PlantEmail author
  • Shohei Koyama
  • Claire Sinai
  • Isaac H. Solomon
  • Gabriel K. Griffin
  • Keith L. Ligon
  • Pratiti Bandopadhayay
  • Rebecca Betensky
  • Ryan Emerson
  • Glenn Dranoff
  • Mark W. Kieran
  • Jerome Ritz
Laboratory Investigation


There is little known regarding the immune infiltrate present in pediatric brain tumors and how this compares to what is known about histologically similar adult tumors and its correlation with survival. Here, we provide a descriptive analysis of the immune infiltrate of 22 fresh pediatric brain tumor tissue samples of mixed diagnoses and 40 peripheral blood samples. Samples were analyzed using a flow cytometry panel containing markers for immune cell subtypes, costimulatory markers, inhibitory signals, and markers of activation. This was compared to the standard method of immunohistochemistry (IHC) for immune markers for 89 primary pediatric brain tumors. Both flow cytometry and IHC data did not correlate with the grade of tumor or mutational load and IHC data was not significantly associated with survival for either low grade or high grade gliomas. There is a trend towards a more immunosuppressive phenotype in higher grade tumors with more regulatory T cells present in these tumor types. Both PD1 and PDL1 were present in only a small percentage of the tumor infiltrate. T cell receptor sequencing revealed up to 10% clonality of T cells in tumor infiltrates and no significant difference in clonality between low and high grade gliomas. We have shown the immune infiltrate of pediatric brain tumors does not appear to correlate with grade or survival for a small sample of patients. Further research and larger studies are needed to fully understand the interaction of pediatric brain tumors and the immune system.


Pediatric brain tumors Immune infiltrate Flow cytometry Mutational load Immunohistochemistry T cell receptor Immunotherapy 



Research reported in this publication was supported by the National Cancer Institute of the National Institutes of Health under Award Number K12CA090354. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The portion of this project involving T cell receptor sequencing was supported by a Young Investigator Award supported by Adaptive Biotechnologies.

Compliance with ethical standards

Conflict of interest

Ashley Plant has no conflict of interest to disclose except that she is the recipient of the Young Investigator Award from Biotechnologies Incorporated in the amount of $5000 to support this project. Shohei Koyama has no conflict of interest to disclose. Claire Sinai has no conflict of interest to disclose. Isaac Solomon has no conflict of interest to disclose. Gabriel Griffin has no conflict of interest to disclose relevant to this project but does participate in consulting activities for Moderna Therapeutics. Keith Ligon has no conflict of interest to disclose related to the project. Pratiti Bandopadhayay has no conflict of interest to disclose. Rebecca Betensky has no conflict of interest to disclose. Ryan Emerson is an employee of Adaptive Biotechnologies Incorporated but, otherwise, has no conflict of interest to disclose. Glenn Dranoff became an employee of Novartis Institutes of Biomedical Research during the formation of this project but otherwise has no other conflict of interest to disclose. Mark W. Kieran has no conflict of interest to disclose related to this project. Jerome Ritz has no conflict of interest to disclose related to this project.

Ethical approval

No animals were used in this study. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study prior to any tissue or blood sample collection.

Supplementary material

11060_2017_2737_MOESM1_ESM.docx (5.6 mb)
Supplementary material 1 (DOCX 5716 KB)
11060_2017_2737_MOESM2_ESM.xlsx (25 kb)
Supplementary material 2 (XLSX 25 KB)
11060_2017_2737_MOESM3_ESM.xlsx (187 kb)
Supplementary material 3 (XLSX 186 KB)
11060_2017_2737_MOESM4_ESM.xlsx (16 kb)
Supplementary material 4 (XLSX 16 KB)


  1. 1.
    Curtin SC, Miniño AM, Anderson RN (2016) Declines in cancer death rates among children and adolescents in the United States, 1999–2014. NCHS data brief, no 257. National Center for Health Statistics, HyattsvilleGoogle Scholar
  2. 2.
    Neagu M. Reardon D (2015) An update on the role of immunotherapy and vaccine strategies for primary brain tumors. Curr Treat Options Oncol 16(11):54. CrossRefPubMedGoogle Scholar
  3. 3.
    Yang I, Han S, Sughrue M, Tihan T, Parsa A (2011) Immune cell infiltrate differences in pilocytic astrocytoma and glioblastoma: evidence of distinct immunological microenvironments that reflect tumor biology. J Neurosurg 115:505–511. CrossRefPubMedGoogle Scholar
  4. 4.
    Bienkowski M, Preusser M (2015) Prognostic role of tumor-infiltrating cells in brain tumors: literature review. Curr Opin Neurol 28(6):647–658. CrossRefPubMedGoogle Scholar
  5. 5.
    Kmiecik J, Poli A, Brons N, Waha A, Eide G, Enger P, Zimmer J, Chekenya M (2013) Elevated CD3+ and CD8+ tumor-infiltrating immune cells correlate with prolonged survival in glioblastoma patients despite integrated immunosuppressive mechanisms in the tumor microenvironment and the systemic level. J NeuroImmunol 264:71–83. CrossRefPubMedGoogle Scholar
  6. 6.
    Jacobs J, Idema A, Bol K, Grotenhuis A, Vries J, Wesseling P, Ademma G (2010) Prognostic significance and mechanism of Treg infiltration in human brain tumors. J Neuroimmunol 255:195–199. CrossRefGoogle Scholar
  7. 7.
    Komohara Y, Horlad H, Fujiwara Y, Bai B, Nakagawa T, Suzu S, Nakamura H, Kuratsu J, Takeya M (2012) Importance of direct macrophage-tumor cell interaction on progression of human glioma. Cancer Sci 103(12):2165–2172. CrossRefPubMedGoogle Scholar
  8. 8.
    Donson M, Birks D, Schittone S, Kleinschmidt-DeMasters B, Sun D, Hemenway M, Handler M, Waziri A, Wang M, Foreman N (2012) Increased immune gene expression and immune cell infiltration in high grade astrocytoma distinguish long from short term survivors. J Immunol 189(4):1920–1927. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lohr J, Ratliff T, Huppertz A, Ge Y, Dictus C, Ahmadi R, Grau L, Hiroaka N, Eckstein V, Ecker R, Korff T, von Diemling A, Unterberg A, Beckhove P, Herold-Mende C (2011) Effector T cell infiltration positively impacts survival of glioblastoma patients and is impaired by tumor-derived TGF-beta. Clin Cancer Res 17(13):4296–4308. CrossRefPubMedGoogle Scholar
  10. 10.
    Yang I, Tihan T, Han S, Wrensch M, Wiencke J, Sughrue M, Parsa A (2010) CD8+ T cell infiltrate in newly diagnosed glioblastoma associated with long term survival. J Clin Neurosci 17(11):1381–1385. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Prosniak M, Harshyne L, Andrews D, Kenyon L, Bedelbaeva K, Apanasovich T, Heber-Katz E, Cotzia P, Hooper D (2013) Glioma grade is associated with the accumulation and activity of cells bearing M2 monocyte markers. Clin Canc Res 19(14):3776–3786. CrossRefGoogle Scholar
  12. 12.
    Berghoff A, Kiesel B, Widhalm G, Rajky O, Ricken G, Wohrer A, Dieckmann K, Filipits M, Brandsetter A, Weller M, Kurscheid S, Hegi M, Zielinksi C, Marosi C, Hainfellner J, Preusser M, Wick W (2015) Programmed cell death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol 17(8):1064–1075. CrossRefPubMedGoogle Scholar
  13. 13.
    Rooney M, Shukla S, Wu C, Getz G, Hacohen N (2015) Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160:48–61. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Van Allen E, Miao D, Schilling B, Shukla S, Blank C, Zimmer L, Sucker A, Hillen U, Guekes Foppen M, Goldinger S, Utikal J, Hassel J, Weide B, Kaehler K, Loquai C, Mohr P, Gutzmer P, Dummer R, Gabriel S, Wu C, Schadendorf D, Garraway L (2015) Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350(6257):207–211CrossRefGoogle Scholar
  15. 15.
    Rizvi N, Hellman M, Snyder A, Kvistborg P, Makarov V, Havel J, Lee W, Yuan J, Wong P, Ho T, Miller M, Rekhtman N, Moreira A, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon E, Merghoub T, Wolchok J, Schumacker T, Chan T (2015) Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–126. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lawrence M, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH, Roberts SA, Kiezun A, Hammerman PS, McKenna A, Drier Y, Zou L, Ramos AH, Pugh TJ, Stransky N, Helman E, Kim J, Sougnez C, Ambrogio L, Nickerson E, Shefler E, Cortes ML, Auclair D, Saksena G, Voet D, Noble M, DiCara D, Lin P, Lichetsein L, Heiman DI, Fennell T, Imielinski M, Hernandez B, Hodis E, Baca S, Dulak A, Lohr J, Landau D, Wu C, Melendez-Zajgla J, Hidalgo-Miranda A, Koren A, McCarroll S, Mora J, Lee R, Crompton B, Onofrio R, Parkin M, Winckler W, Ardlie K, Gabriel S, Roberts C, Biegel J, Stegmaier K, Bass A, Garraway L, Meyerson M, Golub T, Gordenin D, Sunyaev S, Lander E, Getz G (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457):214–218. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Brown S, Warren R, Gibb E, Martin S, Spinelli J, Nelson B, Holt R (2015) Neo-antigens predicted by cancer genome meta-analysis correlate with increased patient survival. Genome Res 24(5):743–750. CrossRefGoogle Scholar
  18. 18.
    Griesinger A, Birks D, Donson A, Amani V, Hoffman L, Waziri A, Wang M, Handler M, Foreman N (2013) Characterization of distinct immunophenotypes across pediatric brain tumor types. J Immunol 191(9):4880–4888. CrossRefPubMedGoogle Scholar
  19. 19.
    Griesinger A, Donson A, Foreman N (2014) Immunotherapeutic implications of the immunophenotype of pediatric brain tumors. OncoImmunology 3(1):e27256. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Koyama S, Akbay E, Li Y, Herter-Sprie G, Buckowski Z, Richards W, Gandhi L, Redig A, Rodig S, Asahina H, Jones R, Kulkami M, Kuraguchi M, Palakurthi S, Fecci P, Johnson B, Janne P, Engleman J, Gangadharan S, Costa D, Freeman G, Bueno R, Hodi F, Dranoff G, Wong K, Hammerman P (2016) Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 17(7):10501. CrossRefGoogle Scholar
  21. 21.
    Du Z, Abedalthagafi M, Aizer A, McHenry A, Sun H, Bray MA, Viramontes O, Machaidze R, Brastianos P, Reardon D, Dunn I, Freeman G, Ligon K, Carpenter A, Alexander B, Agar N, Rodig S, Bradshaw E, Santagata S (2014) Increased PDL1 expression of the immune modulatory molecular PD-L1 (CD274) in anaplastic meningioma. Oncotarget 6(7):4704–4716. CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Robins H, Campregher P, Srivastava S, Wacher A, Turtle C, Kahsai O, Riddell S, Warren E, Carlson C (2009) Comprehensive assessment of T-cell receptor β-chain diversity in αβ T cells. Blood 114(19):4099–4107. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Carlson C, Emerson S, Sherwood A, Desmarais C, Chung M, Parsons J, Steen M, LaMadrid-Herrmannsfeldt M, Williamson D, Livingston R, Wu E, Wood B, Rieder M, Robins H (2013) Using synthetic templates to design unbiased multiplex PCR assay. Nat Commun 4:2680. CrossRefPubMedGoogle Scholar
  24. 24.
    Robins H, Desmarais C, Matthis J, Livingston R, Andriesen J, Reijonen H, Nepom G, Yee C, Cerosaletti K (2012) Ultra-sensitive detection of rare T cell clones. J Immunol Methods 375(1–2):14–19. CrossRefPubMedGoogle Scholar
  25. 25.
    Kirsch I, Vignali M, Robins H (2015) T cell-receptor profiling in cancer. Mol Oncol 9(10):2063–2070. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ramkissoon SH, Bandopadhayay P, Hwang J, Ramkissoon LA, Greenwald NF, Schumacher SE, O’Rourke R, Pinches N, Ho P, Malkin H, Sinai C, Filbin M, Plant A, Bi WL, Chang MS, Yang E, Wright KD, Manley PE, Ducar M, Alexandrescu S, Lidov H, Delalle I, Goumnerova LC, Church AJ, Janeway KA, Harris MH, MacConnell LE, Folkerth RD, Lindeman NI, Stiles CD, Kieran MW, Ligon AH, Santagata S, Dubuc AM, Chi SN, Beroukhim R, Ligon KL (2017) Clinical targeted exome-based sequencing in combination with genome wide copy number profiling: precision medicine based analysis of 203 pediatric brain tumors. Neuro Oncol. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sholl LM, Do K, Shivdasani P, Cerami E, Dubuc AM, Kuo FC, Garcia EP, Jia Y, Davineni P, Abo RP, Pugh TJ, van Hummelen P, Thomer AR, Ducar M, Berger AH, Nishino M, Janeway KA, Church A, Harris M, Ritterhouse LL, Campbell JD, Rojas-Rudilla V, Ligon AH, Ramkissoon S, Cleary JM, Matulonis U, Oxnard GR, Chao R, Tassell V, Christensen J, Hahn WC, Kantoff PW, Kwiatkowski DJ, Johnson BE, Meyerson M, Garraway LA, Shapiro GI, Rollins BJ, Lindeman NI, MacConail LE (2016) Institutional implementation of clinical tumor profiling on an unselected cancer population. JCI Insight 1(19):e87062. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Fecci PE, Mitchell DA, Whitesides JF, Xie W, Friedman AH, Archer GE, Herndon JE 2nd, Bigner DD, Dranoff G, Sampson JH (2006) Increased regulatory T cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res 66(6):3294–3302. CrossRefPubMedGoogle Scholar
  29. 29.
    Ilie M, Hofman V, Dietel M, Soria JC, Hofman P (2016) Assessment of the PDL1 status by immunohistochemistry: challenges and perspectives for therapeutic strategies in lung cancer patients. Virchows Arch 468(5):511–525. CrossRefPubMedGoogle Scholar
  30. 30.
    Sacher AG, Gandhi L (2016) Biomarkers for the clinical use of PD-1/PDL1 inhibitors in non-small cell lung cancer: a review. JAMA Oncol 2(9):1217–1222. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ashley S. Plant
    • 1
    Email author return OK on get
  • Shohei Koyama
    • 2
  • Claire Sinai
    • 3
  • Isaac H. Solomon
    • 4
  • Gabriel K. Griffin
    • 4
  • Keith L. Ligon
    • 5
  • Pratiti Bandopadhayay
    • 1
  • Rebecca Betensky
    • 6
  • Ryan Emerson
    • 7
  • Glenn Dranoff
    • 8
  • Mark W. Kieran
    • 1
  • Jerome Ritz
    • 9
  1. 1.Pediatric Neuro-OncologyDana-Farber Cancer InstituteBostonUSA
  2. 2.Department of Respiratory Medicine and Clinical ImmunologyOsaka University Graduate School of MedicineOsakaJapan
  3. 3.Pediatric Hematology/OncologyDana-Farber Cancer InstituteBostonUSA
  4. 4.Department of PathologyBrigham and Women’s HospitalBostonUSA
  5. 5.Division of Neuro-Pathology, Department of PathologyBrigham and Women’s HospitalBostonUSA
  6. 6.Harvard T.H. Chan School of Public HealthBostonUSA
  7. 7.Adpative Technologies CorpSeattleUSA
  8. 8.Novartis Institutes for Biomedical ResearchCambridgeUSA
  9. 9.Dana-Farber Cancer InstituteBostonUSA

Personalised recommendations