Skip to main content

Advertisement

Log in

SNF5 as a prognostic factor in skull base chordoma

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The current study aimed to characterize SNF5 expression and investigate the relationship between SNF5 and clinicopathological features in skull base chordoma. 48 patients diagnosed with skull base chordoma were enrolled in this study. Tissue microarray and immunohistochemistry were performed to evaluate the expression of SNF5 in skull base chordoma. Kaplan–Meier survival analysis was used to assess survival. Multivariable Cox regression analysis was used to identify risk factors affecting patient survival. The H-scores for cytoplasmic SNF5 ranged from 124.47 to 254.52. Low expression of SNF5 was correlated with shorter overall survival (OS) (p = 0.021). Patients with age > 55 years old had shorter progression free survival (PFS) and OS times than patients whose age ≤ 55 years old (p = 0.005 and 0.003, respectively). The gross total resection group showed longer PFS than the non-gross total resection group (p = 0.024). Females showed shorter PFS times than males (p = 0.033). Multivariable Cox regression analysis showed that age, extent of resection and sex were independent prognostic factors for PFS (p = 0.010, 0.013 and 0.042, respectively). Age was an independent prognostic factor for OS (p = 0.010). Our study indicate that low expression of SNF5 is associated with poor prognosis in skull base chordoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

OS:

Overall survival

PFS:

Progression free survival

TMA:

Tissue microarray

ATP:

Adenosine triphosphate

EIF4E:

Eukaryotic initiation factor 4E

HR:

Hazard ratio

CI:

Confidence interval

References

  1. Heffelfinger MJ, Dahlin DC, MacCarty CS, Beabout JW (1973) Chordomas and cartilaginous tumors at the skull base. Cancer 32(2):410–420

    Article  CAS  PubMed  Google Scholar 

  2. Salisbury JR (1993) The pathology of the human notochord. J Pathol 171(4):253–255. https://doi.org/10.1002/path.1711710404

    Article  CAS  PubMed  Google Scholar 

  3. Walcott BP, Nahed BV, Mohyeldin A, Coumans JV, Kahle KT, Ferreira MJ (2012) Chordoma: current concepts, management, and future directions. Lancet Oncol 13(2):e69–e76. https://doi.org/10.1016/S1470-2045(11)70337-0

    Article  PubMed  Google Scholar 

  4. Stacchiotti S, Sommer J, Chordoma Global Consensus G (2015) Building a global consensus approach to chordoma: a position paper from the medical and patient community. Lancet Oncol 16(2):e71–e83. https://doi.org/10.1016/S1470-2045(14)71190-8

    Article  PubMed  Google Scholar 

  5. Kingston RE, Narlikar GJ (1999) ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev 13(18):2339–2352

    Article  CAS  PubMed  Google Scholar 

  6. Smith CL, Horowitz-Scherer R, Flanagan JF, Woodcock CL, Peterson CL (2003) Structural analysis of the yeast SWI/SNF chromatin remodeling complex. Nat Struct Biol 10(2):141–145. https://doi.org/10.1038/nsb888

    Article  CAS  PubMed  Google Scholar 

  7. Roberts CW, Orkin SH (2004) The SWI/SNF complex–chromatin and cancer. Nat Rev Cancer 4(2):133–142. https://doi.org/10.1038/nrc1273

    Article  CAS  PubMed  Google Scholar 

  8. Eaton KW, Tooke LS, Wainwright LM, Judkins AR, Biegel JA (2011) Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatr Blood Cancer 56(1):7–15. https://doi.org/10.1002/pbc.22831

    Article  PubMed  PubMed Central  Google Scholar 

  9. Versteege I, Sevenet N, Lange J, Rousseau-Merck MF, Ambros P, Handgretinger R, Aurias A, Delattre O (1998) Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394(6689):203–206. https://doi.org/10.1038/28212

    Article  CAS  PubMed  Google Scholar 

  10. Hasselblatt M, Oyen F, Gesk S, Kordes U, Wrede B, Bergmann M, Schmid H, Fruhwald MC, Schneppenheim R, Siebert R, Paulus W (2009) Cribriform neuroepithelial tumor (CRINET): a nonrhabdoid ventricular tumor with INI1 loss and relatively favorable prognosis. J Neuropathol Exp Neurol 68(12):1249–1255. https://doi.org/10.1097/NEN.0b013e3181c06a51

    Article  PubMed  Google Scholar 

  11. Weber M, Stockhammer F, Schmitz U, von Deimling A (2001) Mutational analysis of INI1 in sporadic human brain tumors. Acta Neuropathol 101(5):479–482

    CAS  PubMed  Google Scholar 

  12. Modena P, Lualdi E, Facchinetti F, Galli L, Teixeira MR, Pilotti S, Sozzi G (2005) SMARCB1/INI1 tumor suppressor gene is frequently inactivated in epithelioid sarcomas. Cancer Res 65(10):4012–4019. https://doi.org/10.1158/0008-5472.CAN-04-3050

    Article  CAS  PubMed  Google Scholar 

  13. Gui S, Zong X, Wang X, Li C, Zhao P, Cao L, Zhang Y (2016) Classification and surgical approaches for transnasal endoscopic skull base chordoma resection: a 6-year experience with 161 cases. Neurosurg Rev 39(2):321–332. https://doi.org/10.1007/s10143-015-0696-1 (discussion 332–323).

    Article  PubMed  Google Scholar 

  14. Zhai Y, Bai J, Wang S, Du J, Wang J, Li C, Gui S, Zhang Y (2017) Differences in dural penetration of clival chordomas are associated with different prognosis and expression of platelet-derived growth factor receptor-beta. World Neurosurg 98:288–295. https://doi.org/10.1016/j.wneu.2016.07.096

    Article  PubMed  Google Scholar 

  15. Chambers KJ, Lin DT, Meier J, Remenschneider A, Herr M, Gray ST (2014) Incidence and survival patterns of cranial chordoma in the United States. Laryngoscope 124(5):1097–1102. https://doi.org/10.1002/lary.24420

    Article  PubMed  Google Scholar 

  16. Samii A, Gerganov VM, Herold C, Hayashi N, Naka T, Mirzayan MJ, Ostertag H, Samii M (2007) Chordomas of the skull base: surgical management and outcome. J Neurosurg 107(2):319–324. https://doi.org/10.3171/JNS-07/08/0319

    Article  PubMed  Google Scholar 

  17. Wang L, Wu Z, Tian K, Wang K, Li D, Ma J, Jia G, Zhang L, Zhang J (2017) Clinical features and surgical outcomes of patients with skull base chordoma: a retrospective analysis of 238 patients. J Neurosurg. https://doi.org/10.3171/2016.9.JNS16559

  18. Wilson BG, Roberts CW (2011) SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer 11(7):481–492. https://doi.org/10.1038/nrc3068

    Article  CAS  PubMed  Google Scholar 

  19. Samartzis EP, Noske A, Dedes KJ, Fink D, Imesch P (2013) ARID1A mutations and PI3K/AKT pathway alterations in endometriosis and endometriosis-associated ovarian carcinomas. Int J Mol Sci 14(9):18824–18849. https://doi.org/10.3390/ijms140918824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. de la Serna IL, Carlson KA, Imbalzano AN (2001) Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation. Nat Genet 27(2):187–190. https://doi.org/10.1038/84826

    Article  PubMed  Google Scholar 

  21. Seo S, Richardson GA, Kroll KL (2005) The SWI/SNF chromatin remodeling protein Brg1 is required for vertebrate neurogenesis and mediates transactivation of Ngn and NeuroD. Development 132(1):105–115. https://doi.org/10.1242/dev.01548

    Article  CAS  PubMed  Google Scholar 

  22. Wang X, Lee RS, Alver BH, Haswell JR, Wang S, Mieczkowski J, Drier Y, Gillespie SM, Archer TC, Wu JN, Tzvetkov EP, Troisi EC, Pomeroy SL, Biegel JA, Tolstorukov MY, Bernstein BE, Park PJ, Roberts CW (2017) SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. Nat Genet 49(2):289–295. https://doi.org/10.1038/ng.3746

    Article  CAS  PubMed  Google Scholar 

  23. Russo P, Biegel JA (2009) SMARCB1/INI1 alterations and hepatoblastoma: another extrarenal rhabdoid tumor revealed? Pediatr Blood Cancer 52(3):312–313. https://doi.org/10.1002/pbc.21893

    Article  PubMed  PubMed Central  Google Scholar 

  24. Judkins AR (2007) Immunohistochemistry of INI1 expression: a new tool for old challenges in CNS and soft tissue pathology. Adv Anat Pathol 14(5):335–339. https://doi.org/10.1097/PAP.0b013e3180ca8b08

    Article  CAS  PubMed  Google Scholar 

  25. Sun H, Zhong X, Wang C, Wang S, Lin L, Zou R, Wu Y, Sun N, Sun G, Wen T, Chi ZH, Zhao Y (2016) SNF5 is Involved in Suppression of Hepatocellular Carcinoma Progression via TGF-Beta 1 Signaling. Anat Rec 299(7):869–877. https://doi.org/10.1002/ar.23357

    Article  CAS  Google Scholar 

  26. Lin H, Wong RP, Martinka M, Li G (2009) Loss of SNF5 expression correlates with poor patient survival in melanoma. Clin Cancer Res 15(20):6404–6411. https://doi.org/10.1158/1078-0432.CCR-09-1135

    Article  CAS  PubMed  Google Scholar 

  27. Yan HX, Zhang YJ, Zhang Y, Ren X, Shen YF, Cheng MB, Zhang Y (2017) CRIF1 enhances p53 activity via the chromatin remodeler SNF5 in the HCT116 colon cancer cell lines. Biochim Biophys Acta 1860(4):516–522. https://doi.org/10.1016/j.bbagrm.2017.02.006

    Article  CAS  PubMed  Google Scholar 

  28. Jagani Z, Mora-Blanco EL, Sansam CG, McKenna ES, Wilson B, Chen D, Klekota J, Tamayo P, Nguyen PT, Tolstorukov M, Park PJ, Cho YJ, Hsiao K, Buonamici S, Pomeroy SL, Mesirov JP, Ruffner H, Bouwmeester T, Luchansky SJ, Murtie J, Kelleher JF, Warmuth M, Sellers WR, Roberts CW, Dorsch M (2010) Loss of the tumor suppressor Snf5 leads to aberrant activation of the Hedgehog-Gli pathway. Nat Med 16(12):1429–1433. https://doi.org/10.1038/nm.2251

    Article  CAS  PubMed  Google Scholar 

  29. Darr J, Klochendler A, Isaac S, Eden A (2014) Loss of IGFBP7 expression and persistent AKT activation contribute to SMARCB1/Snf5-mediated tumorigenesis. Oncogene 33(23):3024–3032. https://doi.org/10.1038/onc.2013.261

    Article  CAS  PubMed  Google Scholar 

  30. Antonelli M, Raso A, Mascelli S, Gessi M, Nozza P, Coli A, Gardiman MP, Arcella A, Massimino M, Buttarelli FR, Giangaspero F (2017) SMARCB1/INI1 involvement in pediatric chordoma: a mutational and immunohistochemical analysis. Am J Surg Pathol 41(1):56–61. https://doi.org/10.1097/PAS.0000000000000741

    Article  PubMed  Google Scholar 

  31. Hasselblatt M, Thomas C, Hovestadt V, Schrimpf D, Johann P, Bens S, Oyen F, Peetz-Dienhart S, Crede Y, Wefers A, Vogel H, Riemenschneider MJ, Antonelli M, Giangaspero F, Bernardo MC, Giannini C, Ud Din N, Perry A, Keyvani K, van Landeghem F, Sumerauer D, Hauser P, Capper D, Korshunov A, Jones DT, Pfister SM, Schneppenheim R, Siebert R, Fruhwald MC, Kool M (2016) Poorly differentiated chordoma with SMARCB1/INI1 loss: a distinct molecular entity with dismal prognosis. Acta Neuropathol 132(1):149–151. https://doi.org/10.1007/s00401-016-1574-9

    Article  PubMed  Google Scholar 

  32. Mobley BC, McKenney JK, Bangs CD, Callahan K, Yeom KW, Schneppenheim R, Hayden MG, Cherry AM, Gokden M, Edwards MS, Fisher PG, Vogel H (2010) Loss of SMARCB1/INI1 expression in poorly differentiated chordomas. Acta Neuropathol 120(6):745–753. https://doi.org/10.1007/s00401-010-0767-x

    Article  CAS  PubMed  Google Scholar 

  33. Yadav R, Sharma MC, Malgulwar PB, Pathak P, Sigamani E, Suri V, Sarkar C, Kumar A, Singh M, Sharma BS, Garg A, Bakhshi S, Faruq M (2014) Prognostic value of MIB-1, p53, epidermal growth factor receptor, and INI1 in childhood chordomas. Neuro Oncol 16(3):372–381. https://doi.org/10.1093/neuonc/not228

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by the Research Special Fund For Public Welfare Industry of Health (201402008); Supported by the National High Technology Research and Development Program of China (863 Program); Supported by the National Natural Science Foundation of China (30971005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yazhuo Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Drs. Mingxuan Li and Yixuan Zhai have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zhai, Y., Bai, J. et al. SNF5 as a prognostic factor in skull base chordoma. J Neurooncol 137, 139–146 (2018). https://doi.org/10.1007/s11060-017-2706-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-017-2706-3

Keywords

Navigation