Skip to main content
Log in

Implication of connexin30 on the stemness of glioma: connexin30 reverses the malignant phenotype of glioma by modulating IGF-1R, CD133 and cMyc

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

A Correction to this article was published on 24 March 2021

This article has been updated

Abstract

Gap-junctional intercellular communication (GJIC) plays a major role in the malignant growth of glioma. Although the mechanistic aspects of GJIC have been extensively studied, the role of connexins in the regulation of the malignant behavior of glioma stem cells (GSCs) remains unclear. In our previous studies, we have shown that connexin30 can interfere with the insulin-like growth factor 1 receptor (IGF-1R), which is known for self-renewal and pluripotency. Following our earlier in vitro observation, in this work, we aimed to study the consequence of this influence of Cx30 on IGF-1R by evaluating the marker of GSCs, CD133 and oncoprotein, cMyc. We strengthened our basis by examining human glioma samples of different grades as well as rat C6 xenografts (Cx30-transfected and -non-transfected C6 cells) along with the sphere formation assays in vitro. Investigation of stemness-related CD133 and cMyc in human samples and rat xenografts exhibited a reciprocal relationship between Cx30 and IGF-1R in the low and high grades (HG) of glioma. Cx30 was completely abolished in HG; levels of IGF-1R, CD133 and cMyc expression were positively correlated with HG. Cx30 transfection could attenuate the malignant burden of glioma in rat xenografts. Cx30 transfection also altered the tumor sphere formation of C6 glioma cells in vitro, an important property of GSCs, and there was a significant reduction of CD133 and cMyc expression by Cx30 both in vitro and in vivo. These factors indicate that dysfunction of Cx30 plays a crucial role in the prevention of the stemness of glioma, and the exploitation of this feature will help in the management of glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh KM, Wrensch MR, Barnholtz-Sloan JS (2014) The epidemiology of glioma in adults: a “state of the science” review. Neuro Oncol 16(7):896–913. doi:10.1093/neuonc/nou087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ahmed AU, Auffinger B, Lesniak MS (2013) Understanding glioma stem cells: rationale, clinical relevance and therapeutic strategies. Expert Rev Neurother 13(5):545–555. doi:10.1586/ern.13.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Christopoulos PF, Msaouel P, Koutsilieris M (2015) The role of the insulin-like growth factor-1 system in breast cancer. Mol Cancer 14:43. doi:10.1186/s12943-015-0291-7

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jackson M, Hassiotou F, Nowak A (2015) Glioblastoma stem-like cells: at the root of tumor recurrence and a therapeutic target. Carcinogenesis 36(2):177–185. doi:10.1093/carcin/bgu243

    Article  CAS  PubMed  Google Scholar 

  5. Kapoor A, Kumar S (2014) Cancer stem cell: a rogue responsible for tumor development and metastasis. Indian J Cancer 51(3):282–289. doi:10.4103/0019-509X.146794

    Article  PubMed  Google Scholar 

  6. Brescia P, Ortensi B, Fornasari L, Levi D, Broggi G, Pelicci G (2013) CD133 is essential for glioblastoma stem cell maintenance. Stem Cells 31(5):857–869. doi:10.1002/stem.1317

    Article  CAS  PubMed  Google Scholar 

  7. Bodzin AS, Wei Z, Hurtt R, Gu T, Doria C (2012) Gefitinib resistance in HCC mahlavu cells: upregulation of CD133 expression, activation of IGF-1R signaling pathway, and enhancement of IGF-1R nuclear translocation. J Cell Physiol 227(7):2947–2952. doi:10.1002/jcp.23041

    Article  CAS  PubMed  Google Scholar 

  8. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67. doi:10.1186/1476-4598-5-67

    Article  PubMed  PubMed Central  Google Scholar 

  9. Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP (2007) CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67(9):4010–4015. doi:10.1158/0008-5472.CAN-06-4180

    Article  CAS  PubMed  Google Scholar 

  10. Polyak K, Hahn WC (2006) Roots and stems: stem cells in cancer. Nat Med 12(3):296–300. doi:10.1038/nm1379

    Article  CAS  PubMed  Google Scholar 

  11. Wang J, Wang H, Li Z, Wu Q, Lathia JD, McLendon RE, Hjelmeland AB, Rich JN (2008) c-Myc is required for maintenance of glioma cancer stem cells. PLoS ONE 3(11):e3769. doi:10.1371/journal.pone.0003769

    Article  PubMed  PubMed Central  Google Scholar 

  12. Murphy MJ, Wilson A, Trumpp A (2005) More than just proliferation: Myc function in stem cells. Trends Cell Biol 15(3):128–137. doi:10.1016/j.tcb.2005.01.008

    Article  CAS  PubMed  Google Scholar 

  13. Rossello RA, Kohn DH (2009) Gap junction intercellular communication: a review of a potential platform to modulate craniofacial tissue engineering. J Biomed Mater Res B 88(2):509–518. doi:10.1002/jbm.b.31127

    Article  Google Scholar 

  14. King TJ, Bertram JS (2005) Connexins as targets for cancer chemoprevention and chemotherapy. Biochim Biophys Acta 1719(1–2):146–160. doi:10.1016/j.bbamem.2005.08.012

    Article  CAS  PubMed  Google Scholar 

  15. Schalper KA, Carvajal-Hausdorf D, Oyarzo MP (2014) Possible role of hemichannels in cancer. Front Physiol 5:237. doi:10.3389/fphys.2014.00237

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yu SC, Xiao HL, Jiang XF, Wang QL, Li Y, Yang XJ, Ping YF, Duan JJ, Jiang JY, Ye XZ, Xu SL, Xin YH, Yao XH, Chen JH, Chu WH, Sun W, Wang B, Wang JM, Zhang X, Bian XW (2012) Connexin 43 reverses malignant phenotypes of glioma stem cells by modulating E-cadherin. Stem Cells 30(2):108–120. doi:10.1002/stem.1685

    Article  CAS  PubMed  Google Scholar 

  17. Arun S, Vanisree AJ, Ravisankar S (2016) Connexin 30 downregulates Insulin-like growth factor receptor-1, abolishes Erk and potentiates effects of an IGF-R inhibitor in a glioma cell line. Brain Res 1643:80–90. doi:10.1016/j.brainres.2016.04.061

    Article  CAS  PubMed  Google Scholar 

  18. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  19. Devan S, Janardhanam VA (2011) Effect of Naringenin on metabolic markers, lipid profile and expression of GFAP in C6 glioma cells implanted rat’s brain. Ann Neurosci 18(4):151–155. doi:10.5214/ans.0972.7531.1118406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hitomi M, Deleyrolle LP, Mulkearns-Hubert EE, Jarrar A, Li M, Sinyuk M, Otvos B, Brunet S, Flavahan WA, Hubert CG, Goan W, Hale JS, Alvarado AG, Zhang A, Rohaus M, Oli M, Vedam-Mai V, Fortin JM, Futch HS, Griffith B, Wu Q, Xia CH, Gong X, Ahluwalia MS, Rich JN, Reynolds BA, Lathia JD (2015) Differential connexin function enhances self-renewal in glioblastoma. Cell Rep 11(7):1031–1042. doi:10.1016/j.celrep.2015.04.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Condorelli DF, Trovato-Salinaro A, Mudo G, Mirone MB, Belluardo N (2003) Cellular expression of connexins in the rat brain: neuronal localization, effects of kainate-induced seizures and expression in apoptotic neuronal cells. Eur J Neurosci 18(7):1807–1827

    Article  PubMed  Google Scholar 

  22. Carrasco-Garcia E, Saceda M, Martinez-Lacaci I (2014) Role of receptor tyrosine kinases and their ligands in glioblastoma. Cells 3(2):199–235. doi:10.3390/cells3020199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Resnicoff M, Sell C, Rubini M, Coppola D, Ambrose D, Baserga R, Rubin R (1994) Rat glioblastoma cells expressing an antisense RNA to the insulin-like growth factor-1 (IGF-1) receptor are nontumorigenic and induce regression of wild-type tumors. Cancer Res 54(8):2218–2222

    CAS  PubMed  Google Scholar 

  24. Fan QW, Weiss WA (2012) Inhibition of PI3K-Akt-mTOR signaling in glioblastoma by mTORC1/2 inhibitors. Methods Mol Biol 821:349–359. doi:10.1007/978-1-61779-430-8_22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Osuka S, Sampetrean O, Shimizu T, Saga I, Onishi N, Sugihara E, Okubo J, Fujita S, Takano S, Matsumura A, Saya H (2013) IGF1 receptor signaling regulates adaptive radioprotection in glioma stem cells. Stem Cells 31(4):627–640. doi:10.1002/stem.1328

    Article  CAS  PubMed  Google Scholar 

  26. Malaguarnera R, Belfiore A (2014) The emerging role of insulin and insulin-like growth factor signaling in cancer stem cells. Front Endocrinol 5:10. doi:10.3389/fendo.2014.00010

    Article  Google Scholar 

  27. Hsieh A, Ellsworth R, Hsieh D (2011) Hedgehog/GLI1 regulates IGF dependent malignant behaviors in glioma stem cells. J Cell Physiol 226(4):1118–1127. doi:10.1002/jcp.22433

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the Indian Council of Medical Research (No. 52/2/2008-BMS, Dated: 25.03.2010), Department of Science and Technology (No. SR/FT/LS-140/2008), and the University Grant Commission-Basic Scientific Research Research (No. GCCO/A-2/UGC-MERITORIOUS/2013/14, Dated: 10.05.2013). The authors also thank Mr. P.P. Elango for the language editing of the entire manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arambakkam Janardhanam Vanisree.

Ethics declarations

Conflict of interest

The authors have indicated they have no potential conflicts of interest to disclose.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Institutional Human Ethics Committee of the Government General Hospital, Madras Medical College, Chennai, Tamil Nadu and India. Institutional guidelines for the care and use of animals were also followed.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arun, S., Ravisankar, S. & Vanisree, A.J. Implication of connexin30 on the stemness of glioma: connexin30 reverses the malignant phenotype of glioma by modulating IGF-1R, CD133 and cMyc. J Neurooncol 135, 473–485 (2017). https://doi.org/10.1007/s11060-017-2608-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-017-2608-4

Keywords

Navigation