Skip to main content

Advertisement

Log in

Evaluation of mitochondrial respiratory function in highly glycolytic glioma cells reveals low ADP phosphorylation in relation to oxidative capacity

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

High-grade gliomas are aggressive and intensely glycolytic tumors. In the present study, we evaluated the mitochondrial respiratory function of glioma cells (T98G and U-87MG) and fresh human glioblastoma (GBM) tissue. To this end, measurements of oxygen consumption rate (OCR) were performed under various experimental conditions. The OCR of T98G and U-87MG cells was well coupled to ADP phosphorylation based on the ratio of ATP produced per oxygen consumed of ~2.5. In agreement, the basal OCR of GBM tissue was also partially associated with ADP phosphorylation. The basal respiration of intact T98G and U-87MG cells was not limited by the supply of endogenous substrates, as indicated by the increased OCR in response to a protonophore. These cells also displayed a high affinity for oxygen, as evidenced by the values of the partial pressure of oxygen when respiration is half maximal (p 50). In permeabilized glioma cells, ADP-stimulated OCR was only approximately 50% of that obtained in the presence of protonophore, revealing a significant limitation in oxidative phosphorylation (OXPHOS) relative to the activity of the electron transport system (ETS). This characteristic was maintained when the cells were grown under low glucose conditions. Flux control coefficient analyses demonstrated that the impaired OXPHOS was associated with the function of both mitochondrial ATP synthase and the adenine nucleotide translocator, but not the phosphate carrier. Altogether, these data indicate that the availability and metabolism of respiratory substrates and mitochondrial ETS are preserved in T98G and U-87MG glioma cells even though these cells possess a relatively restrained OXPHOS capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vander Heiden M, Cantley L, Thompson C (2009) Understanding the Warburg effect: the metabolic requiremetns of cell proliferation. Science 324:1029–1033. doi:10.1126/science.1160809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hao W, Chang C-PB, Tsao C-C, Xu J (2010) Oligomycin-induced bioenergetic adaptation in cancer cells with heterogeneous bioenergetic organization. J Biol Chem 285:12647–12654. doi:10.1074/jbc.M109.084194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maroon J, Seyfried T, Donohue JP, Bost J (2015) The role of metabolic therapy in treating glioblastoma multiforme. Surg Neurol Int 6:61. doi:10.4103/2152-7806.155259

    Article  PubMed  PubMed Central  Google Scholar 

  4. Valvona CJ, Fillmore HL, Nunn PB, Pilkington GJ (2016) The regulation and function of lactate dehydrogenase A: therapeutic potential in brain tumor. Brain Pathol 26:3–17. doi:10.1111/bpa.12299

    Article  CAS  PubMed  Google Scholar 

  5. Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11:325–337. doi:10.1038/nrc3038

    Article  CAS  PubMed  Google Scholar 

  6. Cardaci S, Ciriolo MR (2012) TCA cycle defects and cancer: when metabolism tunes redox state. Int. J Cell Biol 2012:1–9. doi:10.1155/2012/161837

    Article  Google Scholar 

  7. Srinivasan S, Guha M, Dong DW et al (2016) Disruption of cytochrome c oxidase function induces the Warburg effect and metabolic reprogramming. Oncogene 35:1585–1595. doi:10.1038/onc.2015.227

    Article  CAS  PubMed  Google Scholar 

  8. Lemarie A, Grimm S (2011) Mitochondrial respiratory chain complexes: apoptosis sensors mutated in cancer. Oncogene 30:3985–4003. doi:10.1038/onc.2011.167

    Article  CAS  PubMed  Google Scholar 

  9. Giang AH, Raymond T, Brookes P et al (2013) Mitochondrial dysfunction and permeability transition in osteosarcoma cells showing the warburg effect. J Biol Chem 288:33303–33311. doi:10.1074/jbc.M113.507129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. DeBerardinis RJ, Mancuso A, Daikhin E et al (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104:19345–19350. doi:10.1073/pnas.0709747104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vyas S, Zaganjor E, Haigis MC (2016) Mitochondria and cancer. Cell 166:555–566. doi:10.1016/j.cell.2016.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Villalobo A, Lehninger AL (1980) Stoichiometry of H + ejection coupled to electron transport through site 2 in ascites tumor mitochondria’. Arch Biochem Biophys 205:210–216

    Article  CAS  PubMed  Google Scholar 

  13. LeBleu VS, O’Connell JT, Gonzalez Herrera KN et al (2014) PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol 16:992–1003. doi:10.1038/ncb3039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weinhouse S (1956) On respiratory impaiment on cancer cells. Science 124:267–269. doi:10.1126/science.124.3215.267

    Article  CAS  PubMed  Google Scholar 

  15. Bayley J-P, Devilee P (2012) The Warburg effect in 2012. Curr Opin Oncol 24:62–67. doi:10.1097/CCO.0b013e32834deb9e

    Article  CAS  PubMed  Google Scholar 

  16. Senyilmaz D, Teleman AA (2015) Chicken or the egg: Warburg effect and mitochondrial dysfunction. F1000Prime Rep 7:41. doi:10.12703/P7-41

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wolf A, Agnihotri S, Guha A et al (2010) Targeting metabolic remodeling in glioblastoma multiforme. Oncotarget 1:552–562. doi:10.18632/oncotarget.190

    Article  PubMed  Google Scholar 

  18. Sullivan LB, Gui DY, Hosios AM et al (2015) Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 162:552–563. doi:10.1016/j.cell.2015.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dai Z, Shestov AA, Lai L, Locasale JW (2016) A flux balance of glucose metabolism clarifies the requirements of the Warburg effect. Biophys J 111:1088–1100. doi:10.1016/j.bpj.2016.07.028

    Article  CAS  PubMed  Google Scholar 

  20. Ruas JS, Siqueira-Santos ES, Amigo I, Rodrigues-Silva E, Kowaltowski AJ, Castilho RF (2016) Underestimation of the maximal capacity of the mitochondrial electron transport system in oligomycin-treated cells. PLoS ONE 11:e0150967. doi:10.1371/journal.pone.0150967

    Article  PubMed  PubMed Central  Google Scholar 

  21. Melo DR, Kowaltowski AJ, Wajner M, Castilho RF (2011) Mitochondrial energy metabolism in neurodegeneration associated with methylmalonic acidemia. J Bioenerg Biomembr 43:39–46. doi:10.1007/s10863-011-9330-2

    Article  CAS  PubMed  Google Scholar 

  22. Rosenthal RE, Hamud F, Fiskum G et al (1987) Cerebral ischemia and reperfusion: prevention of brain mitochondrial injury by lidoflazine. J Cereb Blood Flow Metab 7:752–758. doi:10.1038/jcbfm.1987.130

    Article  CAS  PubMed  Google Scholar 

  23. Michelini LGB, Figueira TR, Siqueira-santos ES, Castilho RF (2015) Rotenone exerts similar stimulatory effects on H 2 O 2 production by isolated brain mitochondria from young–adult and old rats. Neurosci Lett 589:25–30. doi:10.1016/j.neulet.2015.01.030

    Article  CAS  PubMed  Google Scholar 

  24. Castilho RF, Meinicke AR, Almeida AM et al (1994) Oxidative damage of mitochondria induced by Fe(II) citrate is potentiated by Ca2 + and includes lipid peroxidation and alterations in membrane proteins. Arch Biochem Biophys 308:158–163. doi:10.1006/abbi.1994.1022

    Article  CAS  PubMed  Google Scholar 

  25. Steinlechner-Maran R, Eberl T, Kunc M et al (1996) Oxygen dependence of respiration in coupled and uncoupled endothelial cells. Am J Physiol 271:C2053–C2061

    CAS  PubMed  Google Scholar 

  26. Scandurra FM, Gnaiger E (2010) Cell respiration under hypoxia: facts and artefacts in mitochondrial oxygen kinetics. Adv Exp Med Biol 662:7–25. doi:10.1007/978-1-4419-1241-1_2

    Article  CAS  PubMed  Google Scholar 

  27. Gellerich FN, Kunz WS, Bohnensack R (1990) Estimation of flux control coefficients from inhibitor titrations by non-linear regression. FEBS Lett 274:167–170. doi:10.1016/0014-5793(90)81355-R

    Article  CAS  PubMed  Google Scholar 

  28. Small J (1993) Flux control coefficients determined by inhibitor titration: the design and analysis of experiments to minimize errors. Biochem J 296:423–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cooper CE, Davies NA, Psychoulis M et al (2003) Nitric oxide and peroxynitrite cause irreversible increases in the Km for oxygen of mitochondrial cytochrome oxidase: in vitro and in vivo studies. Biochim Biophys Acta 1607:27–34. doi:10.1016/j.bbabio.2003.08.003

  30. Beckner ME, Gobbel GT, Abounader R et al (2005) Glycolytic glioma cells with active glycogen synthase are sensitive to PTEN and inhibitors of PI3K and gluconeogenesis. Lab Investig 85:1457–1470. doi:10.1038/labinvest.3700355

    Article  CAS  PubMed  Google Scholar 

  31. Ramão A, Gimenez M, Laure HJ et al (2012) Changes in the expression of proteins associated with aerobic glycolysis and cell migration are involved in tumorigenic ability of two glioma cell lines. Proteome Sci 10:53. doi:10.1186/1477-5956-10-53

    Article  PubMed  PubMed Central  Google Scholar 

  32. Poteet E, Choudhury GR, Winters A et al (2013) Reversing the Warburg effect as a treatment for glioblastoma. J Biol Chem 288:9153–9164. doi:10.1074/jbc.M112.440354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. San Martín A, Ceballo S, Ruminot I et al (2013) A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells. PLoS ONE 8:e57712. doi:10.1371/journal.pone.0057712

    Article  PubMed  PubMed Central  Google Scholar 

  34. Burk D, Schade AL (1956) On respiratory impairment in cancer cells. Science 124:270–272

    CAS  PubMed  Google Scholar 

  35. Ordys BB, Launay S, Deighton RF et al (2010) The role of mitochondria in glioma pathophysiology. Mol Neurobiol 42:64–75. doi:10.1007/s12035-010-8133-5

    Article  CAS  PubMed  Google Scholar 

  36. Santandreu FM, Brell M, Gene AH et al (2008) Differences in mitochondrial function and anti-oxidant systems between regions of human glioma. Cell Physiol Biochem 22:757–768. doi:10.1159/000185559

    Article  CAS  PubMed  Google Scholar 

  37. Birsoy K, Wang T, Chen WW et al (2015) An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162:540–551. doi:10.1016/j.cell.2015.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martínez-Reyes I, Diebold LP, Kong H et al (2016) TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. Mol Cell 61:199–209. doi:10.1016/j.molcel.2015.12.002

    Article  PubMed  Google Scholar 

  39. Gaude E, Frezza C (2016) Tissue-specific and convergent metabolic transformation of cancer correlates with metastatic potential and patient survival. Nat Commun 7:13041. doi:10.1038/ncomms13041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by grants from the São Paulo Research Foundation (FAPESP, #11/50400-0 and #13/02618-1) and the Brazilian National Council for Scientific and Technological Development (CNPq, #150546/2015-7 to TRF). ER-S and JSR are recipients of CNPq and CAPES fellowships, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger F. Castilho.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. UNICAMP ethics committee approval protocol number was 1164/2011.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Research involving animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Experimental procedures involving rats were approved by the local Committee for Ethics in Animal Experimentation (protocol number CEUA 2534-1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues-Silva, E., Siqueira-Santos, E.S., Ruas, J.S. et al. Evaluation of mitochondrial respiratory function in highly glycolytic glioma cells reveals low ADP phosphorylation in relation to oxidative capacity. J Neurooncol 133, 519–529 (2017). https://doi.org/10.1007/s11060-017-2482-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-017-2482-0

Keywords

Navigation